最小の最近傍距離と最大の密度を持つ3D空間で確率的に与えられた点をサンプリングします

5
Shaun Han 2021-01-11 05:31.

私が持っているn3次元空間の点を。すべての最近傍距離がr。より大きい点のサブセットを確率的にサンプリングしたいと思います。サブセットのサイズmは不明ですが、サンプリングされたポイントをできるだけ密にしたいと思います。

同様の質問がありますが、それらはすべて、特定のポイントからサンプリングするのではなく、ポイントを生成することに関するものです。
最小の最近傍距離で3D空間にランダムな点を生成します

それぞれの間の距離が最小の3次元ランダムポイントを生成しますか?

300個のランダムな3Dポイントがあるとしましょう。

import numpy as np
n = 300
points = np.random.uniform(0, 10, size=(n, 3))

最大化しながらm最小の最近傍距離でポイントのサブセットを取得するための最速の方法は何ですか?r = 1m

3 answers

2
David Eisenstat 2021-01-14 15:00.

おそらく効率的な二基準近似スキームがありますが、整数計画法が平均して非常に速いのになぜわざわざするのでしょうか。

import numpy as np

n = 300
points = np.random.uniform(0, 10, size=(n, 3))

from ortools.linear_solver import pywraplp

solver = pywraplp.Solver.CreateSolver("SCIP")
variables = [solver.BoolVar("x[{}]".format(i)) for i in range(n)]
solver.Maximize(sum(variables))
for j, q in enumerate(points):
    for i, p in enumerate(points[:j]):
        if np.linalg.norm(p - q) <= 1:
            solver.Add(variables[i] + variables[j] <= 1)
solver.EnableOutput()
solver.Solve()
print(len([i for (i, variable) in enumerate(variables) if variable.SolutionValue()]))
1
Daniel F 2021-01-18 23:16.

これはサブセットの最適な大きさではありませんがKDTree、距離の計算を最適化するために使用して、それほど長くはかからずに近くにある必要があります。

from scipy.spatial import KDTree
import numpy as np

def space_sample(n = 300, low = 0, high = 10, dist = 1):
    points = np.random.uniform(low, high, size=(n, 3))
    k = KDTree(points)
    pairs = np.array(list(k.query_pairs(dist)))
    
    def reduce_pairs(pairs, remove = []):  #iteratively remove the most connected node
        p = pairs[~np.isin(pairs, remove).any(1)]
        if p.size >0:
            count = np.bincount(p.flatten(), minlength = n)
            r = remove + [count.argmax()]
            return reduce_pairs(p, r)
        else:
            return remove
    
    return np.array([p for i, p in enumerate(points) if not(i in reduce_pairs(pairs))])

subset = space_sample()

最も接続されているノードを繰り返し削除することは最適ではありませんが(300ポイントのうち約200ポイントを維持します)、最適に近い最速のアルゴリズムである可能性があります(ランダムに削除するだけで高速になる唯一の方法です)。あなたはおそらく@njit reduce_pairsその部分をより速くすることができます(後で時間があれば試してみます)。

0
Shaun Han 2021-01-19 14:07.

@David Eisenstatの回答を30の与えられたポイントでテストします:

from ortools.linear_solver import pywraplp
import numpy as np

def subset_David_Eisenstat(points, r):
    solver = pywraplp.Solver.CreateSolver("SCIP")
    variables = [solver.BoolVar("x[{}]".format(i)) for i in range(len(points))]
    solver.Maximize(sum(variables))
    for j, q in enumerate(points):
        for i, p in enumerate(points[:j]):
            if np.linalg.norm(p - q) <= r:
                solver.Add(variables[i] + variables[j] <= 1)
    solver.EnableOutput()
    solver.Solve()
    indices = [i for (i, variable) in enumerate(variables) if variable.SolutionValue()]
    return points[indices]

points = np.array(
[[ 7.32837882, 12.12765786, 15.01412241],
 [ 8.25164031, 11.14830379, 15.01412241],
 [ 8.21790113, 13.05647987, 13.05647987],
 [ 7.30031002, 13.08276009, 14.05452502],
 [ 9.18056467, 12.0800735 , 13.05183844],
 [ 9.17929647, 11.11270337, 14.03027534],
 [ 7.64737905, 11.48906945, 15.34274827],
 [ 7.01315886, 12.77870699, 14.70301668],
 [ 8.88132414, 10.81243313, 14.68685022],
 [ 7.60617372, 13.39792166, 13.39792166],
 [ 8.85967682, 12.72946394, 12.72946394],
 [ 9.50060705, 11.43361294, 13.37866092],
 [ 8.21790113, 12.08471494, 14.02824481],
 [ 7.32837882, 12.12765786, 16.98587759],
 [ 8.25164031, 11.14830379, 16.98587759],
 [ 7.30031002, 13.08276009, 17.94547498],
 [ 8.21790113, 13.05647987, 18.94352013],
 [ 9.17929647, 11.11270337, 17.96972466],
 [ 9.18056467, 12.0800735 , 18.94816156],
 [ 7.64737905, 11.48906945, 16.65725173],
 [ 7.01315886, 12.77870699, 17.29698332],
 [ 8.88132414, 10.81243313, 17.31314978],
 [ 7.60617372, 13.39792166, 18.60207834],
 [ 8.85967682, 12.72946394, 19.27053606],
 [ 9.50060705, 11.43361294, 18.62133908],
 [ 8.21790113, 12.08471494, 17.97175519],
 [ 7.32837882, 15.01412241, 12.12765786],
 [ 8.25164031, 15.01412241, 11.14830379],
 [ 7.30031002, 14.05452502, 13.08276009],
 [ 9.18056467, 13.05183844, 12.0800735 ],])

予想される最小距離が1の場合:

subset1 = subset_David_Eisenstat(points, r=1.)
print(len(subset1))
# Output: 18

最小距離を確認してください。

from scipy.spatial.distance import cdist
dist = cdist(subset1, subset1, metric='euclidean')
# Delete diagonal
res = dist[~np.eye(dist.shape[0],dtype=bool)].reshape(dist.shape[0],-1)
print(np.min(res))
# Output: 1.3285513450926985

予想される最小距離を2に変更します。

subset2 = subset_David_Eisenstat(points, r=2.)
print(len(subset2))
# Output: 10

最小距離を確認してください。

from scipy.spatial.distance import cdist
dist = cdist(subset2, subset2, metric='euclidean')
# Delete diagonal
res = dist[~np.eye(dist.shape[0],dtype=bool)].reshape(dist.shape[0],-1)
print(np.min(res))
# Output: 2.0612041004376223

Related questions

MORE COOL STUFF

Reba McEntire は、彼女が息子の Shelby Blackstock と共有する「楽しい」クリスマスの伝統を明らかにしました:「私たちはたくさん笑います」

Reba McEntire は、彼女が息子の Shelby Blackstock と共有する「楽しい」クリスマスの伝統を明らかにしました:「私たちはたくさん笑います」

Reba McEntire が息子の Shelby Blackstock と共有しているクリスマスの伝統について学びましょう。

メーガン・マークルは、自然な髪のスタイリングをめぐってマライア・キャリーと結ばれました

メーガン・マークルは、自然な髪のスタイリングをめぐってマライア・キャリーと結ばれました

メーガン・マークルとマライア・キャリーが自然な髪の上でどのように結合したかについて、メーガンの「アーキタイプ」ポッドキャストのエピソードで学びましょう.

ハリー王子は家族との関係を修復できるという「希望を持っている」:「彼は父親と兄弟を愛している」

ハリー王子は家族との関係を修復できるという「希望を持っている」:「彼は父親と兄弟を愛している」

ハリー王子が家族、特にチャールズ王とウィリアム王子との関係について望んでいると主張したある情報源を発見してください。

ワイノナ・ジャッドは、パニックに陥った休暇の瞬間に、彼女がジャッド家の家長であることを認識しました

ワイノナ・ジャッドは、パニックに陥った休暇の瞬間に、彼女がジャッド家の家長であることを認識しました

ワイノナ・ジャッドが、母親のナオミ・ジャッドが亡くなってから初めての感謝祭のお祝いを主催しているときに、彼女が今では家長であることをどのように認識したかを学びましょう.

セントヘレナのジェイコブのはしごを登るのは、気弱な人向けではありません

セントヘレナのジェイコブのはしごを登るのは、気弱な人向けではありません

セント ヘレナ島のジェイコブズ ラダーは 699 段の真っ直ぐ上る階段で、頂上に到達すると証明書が発行されるほどの難易度です。

The Secrets of Airline Travel Quiz

The Secrets of Airline Travel Quiz

Air travel is far more than getting from point A to point B safely. How much do you know about the million little details that go into flying on airplanes?

Where in the World Are You? Take our GeoGuesser Quiz

Where in the World Are You? Take our GeoGuesser Quiz

The world is a huge place, yet some GeoGuessr players know locations in mere seconds. Are you one of GeoGuessr's gifted elite? Take our quiz to find out!

バイオニック読書はあなたをより速く読むことができますか?

バイオニック読書はあなたをより速く読むことができますか?

BionicReadingアプリの人気が爆発的に高まっています。しかし、それは本当にあなたを速読術にすることができますか?

オーケーグッド770HPランボルギーニセンテナリオは十分に正気ではない

オーケーグッド770HPランボルギーニセンテナリオは十分に正気ではない

ランボルギーニの創設者であるフェルッチオランボルギーニが100歳になるのは毎日ではありません(そうです、彼は死んでいて、まだ死んでいると思います。

彼らが買った1台の車からAppleの車の計画について私たちが推測できること

彼らが買った1台の車からAppleの車の計画について私たちが推測できること

Appleが自動車分野に参入するという噂はかなり前から渦巻いており、AppleウォッチャーがSixtyEight Researchという会社がAppleの自動車研究開発のシェル会社である可能性が高いと判断したとき、その渦巻きは本当に渦巻いた。また、会社が購入した車は1台だけであることが知られており、その車はAppleが何を考えているかについての手がかりでいっぱいになる可能性があることも伝えています。

天文学者は太陽系の9番目の惑星の新しい証拠を見つけます

天文学者は太陽系の9番目の惑星の新しい証拠を見つけます

太陽系の外側にある架空の大きな物体である惑星Xの探索は、何十年にもわたって人間を魅了してきました。その検索の最新の章は、地球の10倍の大きさで、公転周期が15であるほど遠くにある惑星を指しています。

キャムニュートン、ゴッドダム

キャムニュートン、ゴッドダム

カムニュートンは昨日、簡単な265ヤードと3回のタッチダウンでファルコンズを引き裂き、別の素晴らしいゲームをしました。その日のハイライトは、上のタッチダウンスローでした。これは、視聴するたびにばかげているだけです。

米国のフィギュア スケートは、チーム イベントでの最終決定の欠如に「苛立ち」、公正な裁定を求める

米国のフィギュア スケートは、チーム イベントでの最終決定の欠如に「苛立ち」、公正な裁定を求める

ロシアのフィギュアスケーター、カミラ・バリエバが関与したドーピング事件が整理されているため、チームは2022年北京冬季オリンピックで獲得したメダルを待っています。

Amazonの買い物客は、わずか10ドルのシルクの枕カバーのおかげで、「甘やかされた赤ちゃんのように」眠れると言っています

Amazonの買い物客は、わずか10ドルのシルクの枕カバーのおかげで、「甘やかされた赤ちゃんのように」眠れると言っています

何千人ものAmazonの買い物客がMulberry Silk Pillowcaseを推奨しており、現在販売中. シルクの枕カバーにはいくつかの色があり、髪を柔らかく肌を透明に保ちます。Amazonで最大46%オフになっている間にシルクの枕カバーを購入してください

パデュー大学の教授が覚醒剤を扱った疑いで逮捕され、女性に性的好意を抱かせる

パデュー大学の教授が覚醒剤を扱った疑いで逮捕され、女性に性的好意を抱かせる

ラファイエット警察署は、「不審な男性が女性に近づいた」という複数の苦情を受けて、12 月にパデュー大学の教授の捜査を開始しました。

コンセプト ドリフト: AI にとって世界の変化は速すぎる

コンセプト ドリフト: AI にとって世界の変化は速すぎる

私たちの周りの世界と同じように、言語は常に変化しています。以前の時代では、言語の変化は数年または数十年にわたって発生していましたが、現在では数日または数時間で変化する可能性があります。

SF攻撃で91歳のアジア人女性が殴られ、コンクリートに叩きつけられた

犯罪擁護派のオークランドが暴力犯罪者のロミオ・ロレンゾ・パーハムを釈放

SF攻撃で91歳のアジア人女性が殴られ、コンクリートに叩きつけられた

認知症を患っている 91 歳のアジア人女性が最近、47 番街のアウター サンセット地区でロメオ ロレンゾ パーハムに襲われました。伝えられるところによると、被害者はサンフランシスコの通りを歩いていたところ、容疑者に近づき、攻撃を受け、暴行を受けました。

ℝ

“And a river went out of Eden to water the garden, and from thence it was parted and became into four heads” Genesis 2:10. ? The heart is located in the middle of the thoracic cavity, pointing eastward.

メリック・ガーランドはアメリカに失敗しましたか?

バイデン大統領の任期の半分以上です。メリック・ガーランドは何を待っていますか?

メリック・ガーランドはアメリカに失敗しましたか?

人々にチャンスを与えることは、人生で少し遅すぎると私は信じています。寛大に。

Language