keras-self-attentionパッケージを使用して注意LSTMをどのように視覚化しますか?

11
Eghbal 2019-10-12 17:47.

使っています https://github.com/CyberZHG/keras-self-attentionKERASにアテンションLSTMを実装します。モデルをトレーニングした後、注意部分を視覚化するにはどうすればよいですか?これは時系列予測の場合です。

from keras.models import Sequential
from keras_self_attention import SeqWeightedAttention
from keras.layers import LSTM, Dense, Flatten

model = Sequential()
model.add(LSTM(activation = 'tanh' ,units = 200, return_sequences = True, 
               input_shape = (TrainD[0].shape[1], TrainD[0].shape[2])))
model.add(SeqSelfAttention())
model.add(Flatten())    
model.add(Dense(1, activation = 'relu'))

model.compile(optimizer = 'adam', loss = 'mse')

1 answers

11
OverLordGoldDragon 2019-10-13 02:10.

1つのアプローチはSeqSelfAttention、特定の入力の出力をフェッチし、チャネルごとの予測を表示するようにそれらを編成することです(以下を参照)。より高度なものについては、https://github.com/albermax/innvestigate (使用例が含まれています)。

更新:私もお勧めできますhttps://github.com/OverLordGoldDragon/see-rnn、私が書いたパッケージ。


説明: レイヤー出力をshow_features_1Dフェッチし layer_name(サブストリングにすることができます)、チャネルごとの予測(ラベル付き)を表示します。タイムステップはx軸に、出力値はy軸に沿っています。

  • input_data=形状のデータの単一バッチ(1, input_shape)
  • prefetched_outputs=すでに取得したレイヤー出力。オーバーライドinput_data
  • max_timesteps =表示するタイムステップの最大数
  • max_col_subplots =水平方向のサブプロットの最大数
  • equate_axes =すべてのx軸とy軸を強制的に等しくします(公正な比較のために推奨)
  • show_y_zero = y = 0を赤い線で表示するかどうか
  • channel_axis=レイヤーフィーチャの寸法(たとえばunits、最後のLSTMの場合)
  • scale_width, scale_height =表示される画像の幅と高さを拡大縮小する
  • dpi =画質(1インチあたりのドット数)

ビジュアル(下)の説明

  • 最初は、大きさに関係なく、抽出された特徴の形状を確認するのに役立ちます-たとえば、周波数の内容に関する情報を提供します
  • 2つ目は、特徴の関係(相対的な大きさ、バイアス、頻度など)を確認するのに役立ちます。下の結果は、上の画像とはまったく対照的です。実行するprint(outs_1)と、すべての大きさが非常に小さく、あまり変化しないことがわかります。したがって、y = 0の点を含め、軸を等しくすると、線のようなビジュアルが生成されます。自己注意はバイアス指向です。
  • 3つ目は、上記のように視覚化するには多すぎる機能を視覚化するのに役立ちます。印刷された形状のすべてbatch_shapeinput_shape削除する代わりにでモデルを定義すると?、最初の出力の形状は(10, 60, 240)、2番目の形状であることがわかり(10, 240, 240)ます。言い換えると、最初の出力はLSTMチャネルの注意を返し、2番目の出力は「タイムステップの注意」を返します。以下のヒートマップの結果は、タイムステップで「クールダウン」していることに注意を向けていると解釈できます。

SeqWeightedAttentionは視覚化するのがはるかに簡単ですが、視覚化することはあまりありません。Flattenそれを機能させるには、上記を取り除く必要があります。アテンションの出力形状は次のように(10, 60)なります(10, 240)-単純なヒストグラムを使用できますplt.hist(バッチディメンションを除外するようにしてください-つまり、フィード(60,)または(240,))。


from keras.layers import Input, Dense, LSTM, Flatten, concatenate
from keras.models import Model
from keras.optimizers import Adam
from keras_self_attention import SeqSelfAttention
import numpy as np 

ipt   = Input(shape=(240,4))
x     = LSTM(60, activation='tanh', return_sequences=True)(ipt)
x     = SeqSelfAttention(return_attention=True)(x)
x     = concatenate(x)
x     = Flatten()(x)
out   = Dense(1, activation='sigmoid')(x)
model = Model(ipt,out)
model.compile(Adam(lr=1e-2), loss='binary_crossentropy')

X = np.random.rand(10,240,4) # dummy data
Y = np.random.randint(0,2,(10,1)) # dummy labels
model.train_on_batch(X, Y)

outs = get_layer_outputs(model, 'seq', X[0:1], 1)
outs_1 = outs[0]
outs_2 = outs[1]

show_features_1D(model,'lstm',X[0:1],max_timesteps=100,equate_axes=False,show_y_zero=False)
show_features_1D(model,'lstm',X[0:1],max_timesteps=100,equate_axes=True, show_y_zero=True)
show_features_2D(outs_2[0])  # [0] for 2D since 'outs_2' is 3D


def show_features_1D(model=None, layer_name=None, input_data=None,
                     prefetched_outputs=None, max_timesteps=100,
                     max_col_subplots=10, equate_axes=False,
                     show_y_zero=True, channel_axis=-1,
                     scale_width=1, scale_height=1, dpi=76):
    if prefetched_outputs is None:
        layer_outputs = get_layer_outputs(model, layer_name, input_data, 1)[0]
    else:
        layer_outputs = prefetched_outputs
    n_features    = layer_outputs.shape[channel_axis]

    for _int in range(1, max_col_subplots+1):
      if (n_features/_int).is_integer():
        n_cols = int(n_features/_int)
    n_rows = int(n_features/n_cols)

    fig, axes = plt.subplots(n_rows,n_cols,sharey=equate_axes,dpi=dpi)
    fig.set_size_inches(24*scale_width,16*scale_height)

    subplot_idx = 0
    for row_idx in range(axes.shape[0]):
      for col_idx in range(axes.shape[1]): 
        subplot_idx += 1
        feature_output = layer_outputs[:,subplot_idx-1]
        feature_output = feature_output[:max_timesteps]
        ax = axes[row_idx,col_idx]

        if show_y_zero:
            ax.axhline(0,color='red')
        ax.plot(feature_output)

        ax.axis(xmin=0,xmax=len(feature_output))
        ax.axis('off')

        ax.annotate(str(subplot_idx),xy=(0,.99),xycoords='axes fraction',
                    weight='bold',fontsize=14,color='g')
    if equate_axes:
        y_new = []
        for row_axis in axes:
            y_new += [np.max(np.abs([col_axis.get_ylim() for 
                                     col_axis in row_axis]))]
        y_new = np.max(y_new)
        for row_axis in axes:
            [col_axis.set_ylim(-y_new,y_new) for col_axis in row_axis]
    plt.show()
def show_features_2D(data, cmap='bwr', norm=None,
                     scale_width=1, scale_height=1):
    if norm is not None:
        vmin, vmax = norm
    else:
        vmin, vmax = None, None  # scale automatically per min-max of 'data'

    plt.imshow(data, cmap=cmap, vmin=vmin, vmax=vmax)
    plt.xlabel('Timesteps', weight='bold', fontsize=14)
    plt.ylabel('Attention features', weight='bold', fontsize=14)
    plt.colorbar(fraction=0.046, pad=0.04)  # works for any size plot

    plt.gcf().set_size_inches(8*scale_width, 8*scale_height)
    plt.show()

def get_layer_outputs(model, layer_name, input_data, learning_phase=1):
    outputs   = [layer.output for layer in model.layers if layer_name in layer.name]
    layers_fn = K.function([model.input, K.learning_phase()], outputs)
    return layers_fn([input_data, learning_phase])

リクエストごとのSeqWeightedAttentionの例

ipt   = Input(batch_shape=(10,240,4))
x     = LSTM(60, activation='tanh', return_sequences=True)(ipt)
x     = SeqWeightedAttention(return_attention=True)(x)
x     = concatenate(x)
out   = Dense(1, activation='sigmoid')(x)
model = Model(ipt,out)
model.compile(Adam(lr=1e-2), loss='binary_crossentropy')

X = np.random.rand(10,240,4) # dummy data
Y = np.random.randint(0,2,(10,1)) # dummy labels
model.train_on_batch(X, Y)

outs = get_layer_outputs(model, 'seq', X, 1)
outs_1 = outs[0][0] # additional index since using batch_shape
outs_2 = outs[1][0]

plt.hist(outs_1, bins=500); plt.show()
plt.hist(outs_2, bins=500); plt.show()

Related questions

MORE COOL STUFF

Reba McEntire は、彼女が息子の Shelby Blackstock と共有する「楽しい」クリスマスの伝統を明らかにしました:「私たちはたくさん笑います」

Reba McEntire は、彼女が息子の Shelby Blackstock と共有する「楽しい」クリスマスの伝統を明らかにしました:「私たちはたくさん笑います」

Reba McEntire が息子の Shelby Blackstock と共有しているクリスマスの伝統について学びましょう。

メーガン・マークルは、自然な髪のスタイリングをめぐってマライア・キャリーと結ばれました

メーガン・マークルは、自然な髪のスタイリングをめぐってマライア・キャリーと結ばれました

メーガン・マークルとマライア・キャリーが自然な髪の上でどのように結合したかについて、メーガンの「アーキタイプ」ポッドキャストのエピソードで学びましょう.

ハリー王子は家族との関係を修復できるという「希望を持っている」:「彼は父親と兄弟を愛している」

ハリー王子は家族との関係を修復できるという「希望を持っている」:「彼は父親と兄弟を愛している」

ハリー王子が家族、特にチャールズ王とウィリアム王子との関係について望んでいると主張したある情報源を発見してください。

ワイノナ・ジャッドは、パニックに陥った休暇の瞬間に、彼女がジャッド家の家長であることを認識しました

ワイノナ・ジャッドは、パニックに陥った休暇の瞬間に、彼女がジャッド家の家長であることを認識しました

ワイノナ・ジャッドが、母親のナオミ・ジャッドが亡くなってから初めての感謝祭のお祝いを主催しているときに、彼女が今では家長であることをどのように認識したかを学びましょう.

セントヘレナのジェイコブのはしごを登るのは、気弱な人向けではありません

セントヘレナのジェイコブのはしごを登るのは、気弱な人向けではありません

セント ヘレナ島のジェイコブズ ラダーは 699 段の真っ直ぐ上る階段で、頂上に到達すると証明書が発行されるほどの難易度です。

The Secrets of Airline Travel Quiz

The Secrets of Airline Travel Quiz

Air travel is far more than getting from point A to point B safely. How much do you know about the million little details that go into flying on airplanes?

Where in the World Are You? Take our GeoGuesser Quiz

Where in the World Are You? Take our GeoGuesser Quiz

The world is a huge place, yet some GeoGuessr players know locations in mere seconds. Are you one of GeoGuessr's gifted elite? Take our quiz to find out!

バイオニック読書はあなたをより速く読むことができますか?

バイオニック読書はあなたをより速く読むことができますか?

BionicReadingアプリの人気が爆発的に高まっています。しかし、それは本当にあなたを速読術にすることができますか?

オーケーグッド770HPランボルギーニセンテナリオは十分に正気ではない

オーケーグッド770HPランボルギーニセンテナリオは十分に正気ではない

ランボルギーニの創設者であるフェルッチオランボルギーニが100歳になるのは毎日ではありません(そうです、彼は死んでいて、まだ死んでいると思います。

彼らが買った1台の車からAppleの車の計画について私たちが推測できること

彼らが買った1台の車からAppleの車の計画について私たちが推測できること

Appleが自動車分野に参入するという噂はかなり前から渦巻いており、AppleウォッチャーがSixtyEight Researchという会社がAppleの自動車研究開発のシェル会社である可能性が高いと判断したとき、その渦巻きは本当に渦巻いた。また、会社が購入した車は1台だけであることが知られており、その車はAppleが何を考えているかについての手がかりでいっぱいになる可能性があることも伝えています。

天文学者は太陽系の9番目の惑星の新しい証拠を見つけます

天文学者は太陽系の9番目の惑星の新しい証拠を見つけます

太陽系の外側にある架空の大きな物体である惑星Xの探索は、何十年にもわたって人間を魅了してきました。その検索の最新の章は、地球の10倍の大きさで、公転周期が15であるほど遠くにある惑星を指しています。

キャムニュートン、ゴッドダム

キャムニュートン、ゴッドダム

カムニュートンは昨日、簡単な265ヤードと3回のタッチダウンでファルコンズを引き裂き、別の素晴らしいゲームをしました。その日のハイライトは、上のタッチダウンスローでした。これは、視聴するたびにばかげているだけです。

米国のフィギュア スケートは、チーム イベントでの最終決定の欠如に「苛立ち」、公正な裁定を求める

米国のフィギュア スケートは、チーム イベントでの最終決定の欠如に「苛立ち」、公正な裁定を求める

ロシアのフィギュアスケーター、カミラ・バリエバが関与したドーピング事件が整理されているため、チームは2022年北京冬季オリンピックで獲得したメダルを待っています。

Amazonの買い物客は、わずか10ドルのシルクの枕カバーのおかげで、「甘やかされた赤ちゃんのように」眠れると言っています

Amazonの買い物客は、わずか10ドルのシルクの枕カバーのおかげで、「甘やかされた赤ちゃんのように」眠れると言っています

何千人ものAmazonの買い物客がMulberry Silk Pillowcaseを推奨しており、現在販売中. シルクの枕カバーにはいくつかの色があり、髪を柔らかく肌を透明に保ちます。Amazonで最大46%オフになっている間にシルクの枕カバーを購入してください

パデュー大学の教授が覚醒剤を扱った疑いで逮捕され、女性に性的好意を抱かせる

パデュー大学の教授が覚醒剤を扱った疑いで逮捕され、女性に性的好意を抱かせる

ラファイエット警察署は、「不審な男性が女性に近づいた」という複数の苦情を受けて、12 月にパデュー大学の教授の捜査を開始しました。

コンセプト ドリフト: AI にとって世界の変化は速すぎる

コンセプト ドリフト: AI にとって世界の変化は速すぎる

私たちの周りの世界と同じように、言語は常に変化しています。以前の時代では、言語の変化は数年または数十年にわたって発生していましたが、現在では数日または数時間で変化する可能性があります。

SF攻撃で91歳のアジア人女性が殴られ、コンクリートに叩きつけられた

犯罪擁護派のオークランドが暴力犯罪者のロミオ・ロレンゾ・パーハムを釈放

SF攻撃で91歳のアジア人女性が殴られ、コンクリートに叩きつけられた

認知症を患っている 91 歳のアジア人女性が最近、47 番街のアウター サンセット地区でロメオ ロレンゾ パーハムに襲われました。伝えられるところによると、被害者はサンフランシスコの通りを歩いていたところ、容疑者に近づき、攻撃を受け、暴行を受けました。

ℝ

“And a river went out of Eden to water the garden, and from thence it was parted and became into four heads” Genesis 2:10. ? The heart is located in the middle of the thoracic cavity, pointing eastward.

メリック・ガーランドはアメリカに失敗しましたか?

バイデン大統領の任期の半分以上です。メリック・ガーランドは何を待っていますか?

メリック・ガーランドはアメリカに失敗しましたか?

人々にチャンスを与えることは、人生で少し遅すぎると私は信じています。寛大に。

Language