期間条件に基づく日付によるデータの結合

1
user8959427 2019-04-06 03:57.

(これは、最初にここに投稿されたものへの質問の続きです。

私の元の問題は解決されましたが、これら2つのデータセットを少し異なる方法でマージしたいと思います。

df1はある種の「財務報告」データでdf2あり、ある種の「年末の財務データ」です。以前は、財務レポートデータを最後に利用可能な財務データにリンクしたいと思っていました。

ここdf2で、財務報告書(df1)のデータを使用して、財務データ()を「予測」したいと思います。それはすることにより、データリンクであるIDdate_fdate

次の条件を課したいと思います。

次の場合に参加します。

datet+1)from df2> date_ft)fromでdf1あり、差は6か月以上でなければなりません。

そうでなければ;

取るdatet+2。場合(すなわち、datet+1)未満6ヶ月後であるdate_ft)を使用してdate(でt+2)。

基本的には財務報告データを使ってデータdf1を予測したいのですdf2が、の情報df1は1週間先の予測には役立たないので、翌年のデータを予測したいと思います。

データは次のようになります。

df1:

        ID     date_f
1  1047699 2014-03-03
2   858339 2007-03-01
3  1002910 2009-12-22
4   277135 2011-02-18
5   753308 2004-03-09
6  1018840 2008-02-26
7  1510295 2011-10-21
8     3133 2014-02-27
9  1467858 2010-02-26
10  865436 2004-11-05

df2:

    ID       date year
1 3133 1999-12-31 1999
2 3133 2000-12-31 2000
3 3133 2001-12-31 2001
4 3133 2002-12-31 2002
5 3133 2003-12-31 2003
6 3133 2004-12-31 2004

df1:の最初の5行を使用した期待される出力

        ID     date_f   date        year
1  1047699 2014-03-03 
2   858339 2007-03-01   2007-12-31  2007
3  1002910 2009-12-22   2010-12-31  2010 *
4   277135 2011-02-18   2011-12-31  2011
5   753308 2004-03-09   2004-12-31  2004
  • ここにdateあるべき2009-12-31であるdf2と、それは>まだあるdate_fしかし私が課すしたい条件がそれは>しなければならない」ということです(1週間)date_fdate将来への6ヶ月(または180日)以上になる。だからこここの観測は2番目の条件(わずか1週間の違いのため)では失敗するので、次の年の日付であるを「予測」したいと思い2010-12-31ます。

data1

df1 <- structure(list(ID = c(1047699L, 858339L, 1002910L, 277135L, 753308L, 
1018840L, 1510295L, 3133L, 1467858L, 865436L), date_f = structure(c(16132, 
13573, 14600, 15023, 12486, 13935, 15268, 16128, 14666, 12727
), class = "Date")), row.names = c(NA, -10L), .internal.selfref = <pointer: 0x0000000002511ef0>, class = "data.frame")

data2

df2 <- structure(list(ID = c(3133L, 3133L, 3133L, 3133L, 3133L, 3133L, 
3133L, 753308L, 753308L, 753308L, 753308L, 753308L, 753308L, 
753308L, 753308L, 753308L, 753308L, 753308L, 753308L, 753308L, 
753308L, 753308L, 753308L, 753308L, 753308L, 753308L, 753308L, 
1467858L, 1467858L, 1467858L, 1467858L, 1467858L, 1467858L, 1467858L, 
1467858L, 1467858L, 1467858L, 1467858L, 1467858L, 1467858L, 1467858L, 
1467858L, 1467858L, 1467858L, 1467858L, 1467858L, 1467858L, 277135L, 
277135L, 277135L, 277135L, 277135L, 277135L, 277135L, 277135L, 
277135L, 277135L, 277135L, 277135L, 277135L, 277135L, 277135L, 
277135L, 277135L, 277135L, 277135L, 277135L, 1002910L, 1002910L, 
1002910L, 1002910L, 1002910L, 1002910L, 1002910L, 1002910L, 1002910L, 
1002910L, 1002910L, 1002910L, 1002910L, 1002910L, 1002910L, 1002910L, 
1002910L, 1002910L, 1002910L, 1002910L, 858339L, 858339L, 858339L, 
858339L, 858339L, 858339L, 858339L, 858339L, 858339L, 858339L, 
858339L, 858339L, 858339L, 858339L, 858339L, 858339L, 858339L, 
858339L, 858339L, 858339L, 865436L, 865436L, 865436L, 865436L, 
865436L, 865436L, 865436L, 865436L, 865436L, 865436L, 865436L, 
865436L, 865436L, 865436L, 865436L, 865436L, 865436L, 865436L, 
1018840L, 1018840L, 1018840L, 1018840L, 1018840L, 1018840L, 1018840L, 
1018840L, 1018840L, 1018840L, 1018840L, 1018840L, 1018840L, 1018840L, 
1018840L, 1018840L, 1018840L, 1018840L, 1018840L, 1018840L, 1018840L, 
1047699L, 1047699L, 1047699L, 1047699L, 1047699L, 1047699L, 1047699L, 
1047699L, 1047699L, 1047699L, 1047699L, 1510295L, 1510295L, 1510295L, 
1510295L, 1510295L, 1510295L, 1510295L, 1510295L, 1510295L, 1510295L
), date = structure(c(10956, 11322, 11687, 12052, 12417, 12783, 
13148, 10956, 11322, 11687, 12052, 12417, 12783, 13148, 13513, 
13878, 14244, 14609, 14974, 15339, 15705, 16070, 16435, 16800, 
17166, 17531, 17896, 10956, 11322, 11687, 12052, 12417, 12783, 
13148, 13513, 13878, 14244, 14609, 14974, 15339, 15705, 16070, 
16435, 16800, 17166, 17531, 17896, 10956, 11322, 11687, 12052, 
12417, 12783, 13148, 13513, 13878, 14244, 14609, 14974, 15339, 
15705, 16070, 16435, 16800, 17166, 17531, 17896, 10956, 11322, 
11687, 12052, 12417, 12783, 13148, 13513, 13878, 17166, 14244, 
14609, 14974, 15339, 15705, 16070, 16435, 16800, 17531, 17896, 
10956, 11322, 11687, 12052, 12417, 12783, 13148, 13513, 13878, 
14244, 14609, 14974, 15339, 15705, 16070, 16435, 16800, 17166, 
17531, 17896, 10864, 11230, 11595, 11960, 12325, 12691, 13056, 
13421, 13786, 14152, 14517, 14882, 15247, 15613, 15978, 16343, 
16708, 17074, 10622, 10987, 11353, 11718, 12083, 12448, 12814, 
13179, 13544, 13909, 14275, 14640, 15005, 15370, 15736, 16101, 
16466, 16831, 17197, 17562, 17927, 10956, 11322, 11687, 12052, 
12417, 12783, 13148, 13513, 13878, 14244, 14609, 14609, 14974, 
15339, 15705, 16070, 16435, 16800, 17166, 17531, 17896), class = "Date"), 
    year = c(1999L, 2000L, 2001L, 2002L, 2003L, 2004L, 2005L, 
    1999L, 2000L, 2001L, 2002L, 2003L, 2004L, 2005L, 2006L, 2007L, 
    2008L, 2009L, 2010L, 2011L, 2012L, 2013L, 2014L, 2015L, 2016L, 
    2017L, 2018L, 1999L, 2000L, 2001L, 2002L, 2003L, 2004L, 2005L, 
    2006L, 2007L, 2008L, 2009L, 2010L, 2011L, 2012L, 2013L, 2014L, 
    2015L, 2016L, 2017L, 2018L, 1999L, 2000L, 2001L, 2002L, 2003L, 
    2004L, 2005L, 2006L, 2007L, 2008L, 2009L, 2010L, 2011L, 2012L, 
    2013L, 2014L, 2015L, 2016L, 2017L, 2018L, 1999L, 2000L, 2001L, 
    2002L, 2003L, 2004L, 2005L, 2006L, 2007L, 2016L, 2008L, 2009L, 
    2010L, 2011L, 2012L, 2013L, 2014L, 2015L, 2017L, 2018L, 1999L, 
    2000L, 2001L, 2002L, 2003L, 2004L, 2005L, 2006L, 2007L, 2008L, 
    2009L, 2010L, 2011L, 2012L, 2013L, 2014L, 2015L, 2016L, 2017L, 
    2018L, 1999L, 2000L, 2001L, 2002L, 2003L, 2004L, 2005L, 2006L, 
    2007L, 2008L, 2009L, 2010L, 2011L, 2012L, 2013L, 2014L, 2015L, 
    2016L, 1998L, 1999L, 2000L, 2001L, 2002L, 2003L, 2004L, 2005L, 
    2006L, 2007L, 2008L, 2009L, 2010L, 2011L, 2012L, 2013L, 2014L, 
    2015L, 2016L, 2017L, 2018L, 1999L, 2000L, 2001L, 2002L, 2003L, 
    2004L, 2005L, 2006L, 2007L, 2008L, 2009L, 2009L, 2010L, 2011L, 
    2012L, 2013L, 2014L, 2015L, 2016L, 2017L, 2018L)), row.names = c(NA, 
-167L), .internal.selfref = <pointer: 0x0000000002511ef0>, class = "data.frame")

1 answers

0
user8959427 2019-04-07 03:22.

これで私の問題は解決したと思います。

df1$start_date <- df1$date_f + 183
df1$end_date <- df1$date_f + 540

library(fuzzyjoin)
yy <- fuzzy_left_join(
  df1, df2,
  by = c(
    "ID" = "ID",
    "start_date" = "date",
    "end_date" = "date"
  ),
  match_fun = list(`==`, `<`, `>=`)
)

私が私の論理に失敗するかもしれないと誰かが見たら、私を訂正してください!

3月に財務報告が発表され、7月に財務情報が発表された場合、この結合は無視したいと思います。したがって、start_date <- df1$date_f + 183。また、財務報告の発表から1。5年(540日)を上限に設定しました。したがって、次の年のレポートは正しい財務情報と正しく一致します。

出力のサンプル:

     ID.x     date_f    start_date end_date   ID.y      date     fyear
1  1006835  2008-09-30 2009-04-01 2010-03-24      NA       <NA>    NA
2  1510295  2009-10-19 2010-04-20 2011-04-12 1510295 2010-12-31  2010
3  1506307  2016-02-08 2016-08-09 2017-08-01 1506307 2016-12-31  2016
4   814453  2005-03-15 2005-09-14 2006-09-06  814453 2005-12-31  2005
5   832988  2003-06-19 2003-12-19 2004-12-10  832988 2004-01-31  2003
6  1275283  2007-02-26 2007-08-28 2008-08-19 1275283 2007-12-31  2007
7   858470  2004-03-15 2004-09-14 2005-09-06  858470 2004-12-31  2004
8   885639  2005-03-14 2005-09-13 2006-09-05  885639 2006-01-31  2005
9   732718  2014-04-02 2014-10-02 2015-09-24      NA       <NA>    NA
10 1385157  2009-03-02 2009-09-01 2010-08-24 1385157 2009-09-30  2009

つまり、ID.x=1510295にはdate.f=が2009-10-19あり、参加するyearと、おそらく2009-12-31レポートからわずか2か月後の財務情報が得られます…(これは私にはあまり役に立ちません)

start_date=2010-04-20end_date=の境界を作成します2011-04-12。どこをstart_date今よりも大きけれ2009年財務情報の終わり2009-12-31

私の範囲から境界fuzzyjoinに一致させるために使用する(考える)私はそれらに参加することができます。datedf2df1

###############################################################################

誰かがdata.tableバージョンを持っている場合、このメソッドにはメモリの問題があるので、それは素晴らしいことです。

setDT(df2)[df1, on = .(ID, date > start_date, date <= end_date)]

期待どおりに動作しません...

Related questions

MORE COOL STUFF

Reba McEntire は、彼女が息子の Shelby Blackstock と共有する「楽しい」クリスマスの伝統を明らかにしました:「私たちはたくさん笑います」

Reba McEntire は、彼女が息子の Shelby Blackstock と共有する「楽しい」クリスマスの伝統を明らかにしました:「私たちはたくさん笑います」

Reba McEntire が息子の Shelby Blackstock と共有しているクリスマスの伝統について学びましょう。

メーガン・マークルは、自然な髪のスタイリングをめぐってマライア・キャリーと結ばれました

メーガン・マークルは、自然な髪のスタイリングをめぐってマライア・キャリーと結ばれました

メーガン・マークルとマライア・キャリーが自然な髪の上でどのように結合したかについて、メーガンの「アーキタイプ」ポッドキャストのエピソードで学びましょう.

ハリー王子は家族との関係を修復できるという「希望を持っている」:「彼は父親と兄弟を愛している」

ハリー王子は家族との関係を修復できるという「希望を持っている」:「彼は父親と兄弟を愛している」

ハリー王子が家族、特にチャールズ王とウィリアム王子との関係について望んでいると主張したある情報源を発見してください。

ワイノナ・ジャッドは、パニックに陥った休暇の瞬間に、彼女がジャッド家の家長であることを認識しました

ワイノナ・ジャッドは、パニックに陥った休暇の瞬間に、彼女がジャッド家の家長であることを認識しました

ワイノナ・ジャッドが、母親のナオミ・ジャッドが亡くなってから初めての感謝祭のお祝いを主催しているときに、彼女が今では家長であることをどのように認識したかを学びましょう.

セントヘレナのジェイコブのはしごを登るのは、気弱な人向けではありません

セントヘレナのジェイコブのはしごを登るのは、気弱な人向けではありません

セント ヘレナ島のジェイコブズ ラダーは 699 段の真っ直ぐ上る階段で、頂上に到達すると証明書が発行されるほどの難易度です。

The Secrets of Airline Travel Quiz

The Secrets of Airline Travel Quiz

Air travel is far more than getting from point A to point B safely. How much do you know about the million little details that go into flying on airplanes?

Where in the World Are You? Take our GeoGuesser Quiz

Where in the World Are You? Take our GeoGuesser Quiz

The world is a huge place, yet some GeoGuessr players know locations in mere seconds. Are you one of GeoGuessr's gifted elite? Take our quiz to find out!

バイオニック読書はあなたをより速く読むことができますか?

バイオニック読書はあなたをより速く読むことができますか?

BionicReadingアプリの人気が爆発的に高まっています。しかし、それは本当にあなたを速読術にすることができますか?

2017年の最も人気のある投稿

2017年の最も人気のある投稿

ここLifehackerでは大きな年でした。一緒に、私たちはミツバチを救おうとし、ハッキングされ、太陽をじっと見つめ、グロスチェーンレストランの食べ物を食べ、核爆弾から身を隠しました。

ラストコール:素晴らしき人生だ、コーシャワイン、そしてジュリアチャイルドはユールログを作るのが苦手

ラストコール:素晴らしき人生だ、コーシャワイン、そしてジュリアチャイルドはユールログを作るのが苦手

写真:ゲッティイメージズ経由のハーバート・ドーフマン/コービスさて、昨日、幼い子供たちにマジシャンズを見させて銃を飛び越えていたようです。知っておくと良い!昨夜、娘と私はシカゴの素晴らしいビンテージシアターであるミュージックボックスで映画を見に行きました。年齢に関係なく、誰も問題を抱えてはいけません。それは素晴らしい人生です。

それにふたを置きます。実際、すべてに蓋をしてください。14ドルで12個のシリコンストレッチキッチン蓋を手に入れよう. [エクスクルーシブ]

それにふたを置きます。実際、すべてに蓋をしてください。14ドルで12個のシリコンストレッチキッチン蓋を手に入れよう. [エクスクルーシブ]

Tomorrow's Kitchen シリコンストレッチ蓋 12個パック | $14 | アマゾン | プロモーション コード 20OFFKINJALids は基本的にキッチンの靴下です。常に迷子になり、二度と閉じられない孤立したコンテナーが残ります。しかし、蓋が伸びて、残った容器、鍋、フライパン、さらには大きなスライスされた果物のすべてに適合するとしたらどうでしょうか? その非常に特殊な蓋を失うことを二度と心配する必要はありません。

あなたの最高のワシントン DC ハックを教えてください

あなたの最高のワシントン DC ハックを教えてください

このコラムでは、ロサンゼルスやラスベガスなど、いくつかの産業都市をハッキングしました。今こそ、軍産複合都市の時代です。

米国のフィギュア スケートは、チーム イベントでの最終決定の欠如に「苛立ち」、公正な裁定を求める

米国のフィギュア スケートは、チーム イベントでの最終決定の欠如に「苛立ち」、公正な裁定を求める

ロシアのフィギュアスケーター、カミラ・バリエバが関与したドーピング事件が整理されているため、チームは2022年北京冬季オリンピックで獲得したメダルを待っています。

Amazonの買い物客は、わずか10ドルのシルクの枕カバーのおかげで、「甘やかされた赤ちゃんのように」眠れると言っています

Amazonの買い物客は、わずか10ドルのシルクの枕カバーのおかげで、「甘やかされた赤ちゃんのように」眠れると言っています

何千人ものAmazonの買い物客がMulberry Silk Pillowcaseを推奨しており、現在販売中. シルクの枕カバーにはいくつかの色があり、髪を柔らかく肌を透明に保ちます。Amazonで最大46%オフになっている間にシルクの枕カバーを購入してください

パデュー大学の教授が覚醒剤を扱った疑いで逮捕され、女性に性的好意を抱かせる

パデュー大学の教授が覚醒剤を扱った疑いで逮捕され、女性に性的好意を抱かせる

ラファイエット警察署は、「不審な男性が女性に近づいた」という複数の苦情を受けて、12 月にパデュー大学の教授の捜査を開始しました。

コンセプト ドリフト: AI にとって世界の変化は速すぎる

コンセプト ドリフト: AI にとって世界の変化は速すぎる

私たちの周りの世界と同じように、言語は常に変化しています。以前の時代では、言語の変化は数年または数十年にわたって発生していましたが、現在では数日または数時間で変化する可能性があります。

SF攻撃で91歳のアジア人女性が殴られ、コンクリートに叩きつけられた

犯罪擁護派のオークランドが暴力犯罪者のロミオ・ロレンゾ・パーハムを釈放

SF攻撃で91歳のアジア人女性が殴られ、コンクリートに叩きつけられた

認知症を患っている 91 歳のアジア人女性が最近、47 番街のアウター サンセット地区でロメオ ロレンゾ パーハムに襲われました。伝えられるところによると、被害者はサンフランシスコの通りを歩いていたところ、容疑者に近づき、攻撃を受け、暴行を受けました。

Precios accesibles, nuestro aprendizaje desde la perspectiva iOS

Precios accesibles, nuestro aprendizaje desde la perspectiva iOS

Cómo mejoramos la accesibilidad de nuestro componente de precio, y cómo nos marcó el camino hacia nuevos saberes para nuestro sistema de diseño. Por Ana Calderon y Laura Sarmiento Leer esta historia en inglés.

ℝ

“And a river went out of Eden to water the garden, and from thence it was parted and became into four heads” Genesis 2:10. ? The heart is located in the middle of the thoracic cavity, pointing eastward.

Language