微分作用素の対数の行列は何ですか( $\ln D$)?さまざまな数学分野でのこの演算子の役割は何ですか?

9
Anixx 2021-02-01 17:57.

BabusciとDattoli、微分演算子の対数について、arXiv:1105.5978は、いくつかの素晴らしい結果をもたらします。\begin{align*} (\ln D) 1 & {}= -\ln x -\gamma \\ (\ln D) x^n & {}= x^n (\psi (n+1)-\ln x) \\ (\ln D) \ln x & {}= -\zeta(2) -(\gamma+\ln x)\ln x. \end{align*} その行列は何ですか、そうでなければ、それを関数に適用する方法はありますか?

数学のさまざまな分野での直感的な役割は何ですか?

2 answers

4
Carlo Beenakker 2021-02-01 21:23.

フーリエ変換時 $x\mapsto k$、これは行列要素を持つ対角演算子になります $\langle k|\ln D|k'\rangle=2\pi \delta(k-k')\ln k$。したがって、で行列要素を見つけるには$x$-対数のフーリエ変換を反転する必要がある表現 $\ln k$。のフーリエ変換に対するこのMSEの答えから$\ln |k|$ (絶対値の符号付き)私はそれを結論付けます $$\langle x|\ln D|x'\rangle=\left(\frac{i \pi}{2}-\gamma\right) \delta (x-x')+\text{P.V.}\left(\frac{1}{2 (x-x')}-\frac{1}{2 | x-x'| }\right).$$

この表記は、 $\ln D$ 機能に作用する $f(x)$ 新しい関数を生成します $g(x)$ によって与えられた $$g(x)=\int_{-\infty}^\infty \left[\left(\frac{i \pi}{2}-\gamma\right) \delta (x-x')+\text{P.V.}\left(\frac{1}{2 (x-x')}-\frac{1}{2 | x-x'| }\right)\right]f(x')\,dx'$$ $$=\left(\frac{i \pi}{2}-\gamma\right) f(x)+\frac{1}{2}\,\text{P.V.}\int_{-\infty}^\infty \left(\frac{1}{x-x'}-\frac{1}{| x-x'| }\right)\,f(x')\,dx'.$$

3
Tom Copeland 2021-02-10 11:54.

の解釈 $\ln(D)$ 通常の微分演算子とその正の整数の累乗を分数積分微分演算子(FID)に選択する補間、つまり次の解釈に依存します。 $D$実数(または解析接続による複素数)によって指数化されます。これは、FIDが作用する関数に依存します。以下で説明する拡張は、B&Dの3つのアイデンティティを生成し、Pincherleが正当なFIDファミリに課した特性と一致します(1/2導関数に関するこのMO-Qおよび分数階微積分に関するこのMO-Qを参照)。これは、複素変数の関数全体の「基底関数系」に対するアクションによって定義できます。$\omega$ なので

$$D_x^{\alpha} \; H(x) \; \frac{x^{\omega}}{\omega!} = H(x) \frac{x^{\omega-\alpha}}{(\omega-\alpha)!} ,$$

どこ $H(x)$ はヘヴィサイドの階段関数であり、 $\alpha$ そして $\omega$ 一般化された関数との分布の理論で通常の識別を持つ任意の複素数である可能性があります

$$(-1)^n \delta^{(n)}(x) = H(x) \frac{x^{-n-1}}{(-n-1)!},$$

$n=0,1,2,3,...$

これは、実数直線上のフーリエ変換またはそれに関連する疑似差分演算/記号とはほとんど関係がないことに注意してください。特に、$D^{\alpha}$ ここでは、による乗算とは関係ありません $(i 2 \pi f)^{\alpha}$周波数空間で。他の場所では、このFIDのさまざまな同等の畳み込み表現を1)正規化されたコーシー複素周回積分の変換による円上のFT、2)オイラーベータ関数の積分表現の解析接続として示しています。実線セグメントに沿った積分の複素平面、またはハダマード有限部分またはポッホハマー輪郭を介した正規化、3)生成関数のアクションを介した標準微分演算子のメリン補間$e^{tD_x}$、ラマヌジャンのマスター式の演算子アプリケーション、または4)一般化された二項係数のsinc関数/カーディナルシリーズ補間。

上記のFIDの定義がどれほど実行可能かを見てみましょう。FIDの微小生成元(infinigen)および3つのB&Dアイデンティティへの接続。Appell Sheffer多項式列の形式化、したがって対称多項式/関数理論との関連。インフィニゲンとFIDのマトリックス担当者。

無限小生成作用素を仮定すると $IG$ そのような存在

$$ e^{\alpha \; IG} \; H(x) \; \frac{x^{\omega}}{\omega!} = D_x^{\alpha} \; H(x) \; \frac{x^{\omega}}{\omega!} = H(x) \frac{x^{\omega-\alpha}}{(\omega-\alpha)!} = e^{-\alpha D_{\omega}} \; H(x) \; \frac{x^{\omega}}{\omega!},$$

その後、正式に

$$D_{\alpha} \; e^{\alpha IG} \; H(x) \; \frac{x^{\omega}}{\omega!} |_{\alpha =0} = IG \; H(x) \; \frac{x^{\omega}}{\omega!} = \ln(D_x) \; H(x) \; \frac{x^{\omega}}{\omega!}$$

$$ = D_{\alpha} \; H(x) \; \frac{x^{\omega-\alpha}}{(\omega-\alpha)!} |_{\alpha =0} = -D_{\omega} \;\frac{x^{\omega}}{\omega!}$$

$$ = [\; -\ln(x) + \psi(1+\omega) \;] H(x) \; \frac{x^{\omega}}{\omega!} $$

$$ = [ \; -\ln(x) + \psi(1+xD_x) \;] \; H(x) \; \frac{x^{\omega}}{\omega!}, $$

そして無限大は

$$ \ln(D_x) := IG = -\ln(x) + \psi(1+xD_x),$$

どこ $\psi(x)$ はディガンマ関数であり、複素平面上で有理型関数として定義でき、リーマンゼータ関数の値と密接に関連しています。 $s = 2,3,4,...$

一部の担当者(B&Dと同じIDを与える)は

$$IG \; f(x)=\frac{1}{2\pi i}\oint_{|z-x|=|x|}\frac{-\ln(z-x)+\lambda}{z-x}f(z) \; dz$$

$$=(-\ln(x)+\lambda) \; f(x)+ \int_{0}^{x}\frac{f\left ( x\right )-f(u)}{x-u}du$$

$$ = [\; -\ln(x)+ \frac{\mathrm{d} }{\mathrm{d} \beta}\ln[\beta!]\mid _{\beta =xD} \; ] \; f(x)=[ \; -\ln(x)+\Psi(1+xD) \;] \; f(x)$$

$$ = [ \; -\ln(x)+\lambda - \sum_{n=1}^{\infty } (-1)^n\zeta (n+1) \; (xD)^n \;] \; f(x)$$

どこ $\lambda$ オイラー-マシェロニ定数に関連している $\lambda=D_{\beta} \; \beta! \;|_{\beta=0}$

上記の担当者に到達する他の担当者およびその他の方法は、以下の参照に記載されています。

Appell Sheffer多項式列の形式化による方法を見てみましょう。これは、無限大の明示的な差分式のべき乗時に収束の問題を解決し、対称多項式/関数の理論への接続を可能にします。

関連するAppellの多項式列 $p_n(z) = (p.(z))^n$ 複素変数全体に指数母関数があります $t$つまり、テイラー級数がグローバルに収束しているため、

$$\frac{1}{t!} \; e^{zt} = e^{a.t} \; e^{zt} = e^{(a.+z)t} = e^{p.(z)t} = \sum_{n\geq 0} p_n(z) \frac{t^n}{n!}$$

4つの一貫した方法で定義された相反多項式列を使用 $\hat{p}(z)$

1) $t! \;e^{zt} = e^{\hat{a}.t} \; e^{zt} = e^{(\hat{a}.+z)t} = e^{\hat{p}.(z)t} $、egf、

2) $M_p \cdot M_{\hat{p}} = I $、単項式のべき乗に基づく2つのシーケンスの下三角係数行列の観点から $z^n$ ユニット対角で、

3) $p_n(\hat{p}.(z)) = \hat{p}_n(p.(z)) = (a. + \hat{a.}+z)^n = 1$、畳み込み畳み込み反転、

4) $D_z! \; z^n = e^{\hat{a.}D_z} \; z^n = (\hat{a.}+z)^n = \hat{p}_n(z)$、運用ジェネレータ。

したがって、アペル多項式の上昇演算 $p_n(z)$ によって定義されます

$$R_z \; p_n(z) = p_{n+1}(z)$$

によって与えられます

$$ R_z \; p_n(z) = \frac{1}{D_z!} \; z \; D_z! \; p_n(z) = \frac{1}{D_z!} \; z \; p_n(\hat{p}.(z))$$

$$ = \frac{1}{D_z!} \; z \; z^n = \frac{1}{D_z!} \; z^{n+1} = p_{n+1}(z),$$

昇降演算子の演算子共役、または「ゲージ変換」 $z$ パワー単項式用。

また、オペレーター整流子付き $[A,B] = AB - BA$

$$R_z = \frac{1}{D_z!} \; z \; D_z! = z + [\frac{1}{D_z!},z] \; D_z! .$$

ここで、Pincherleと、Rotaが有限演算子計算のために宣伝した同名の演算子派生物を再入力します。グレーブス-パンシェルル微分グレーブス・リー・ハイゼンベルグ-ワイル整流子由来その電力$[D_z,z] = 1$ そこから、通常の並べ替えにより、のべき級数として表される関数を意味します。 $D_z$

$$[f(D_z),z] = f'(D_z) = D_t \; f(t) \; |_{t = D_z}.$$

これは、アクションに続くパンシェルル微分(PD)のアバターです。 $$[D^n,z] \; \frac{z^{\omega}}{\omega!} = [\;\frac{\omega+1}{(\omega+1-n)!} - \frac{1}{(\omega-n)!}\;] \; z^{\omega+1-n} = n \; D_z^{n-1} \; \frac{z^{\omega}}{\omega!},$$

ただし、PDは、以下を満足するより一般的な下降および上昇(はしご)操作に有効です。 $[L,R]= 1$

その後、

$$R_z = \frac{1}{D_z!} \; z \; D_z! = z + [\frac{1}{D_z!},z] \; D_z! = z + D_{t = D_z}\; \ln[\frac{1}{t!}] $$

$$ = z - \psi(1+D_z).$$

代用あり $ z = \ln(x)$

$$R_z = R_x = \ln(x) - \psi(1+ x D_x) = -IG = -\ln(D_x).$$

レイズオペレーションは次のように定義されます

$$ e^{t \; R_z} \; 1 = \sum_{n \geq 0} \frac{t^n}{n!} R_z^n \; 1 = e^{tp.(z)} = \frac{1}{t!} \; e^{zt},$$

の関数全体 $t$繁雑; したがって、

$$e^{-t \; IG} \;1 = e^{t \;R_x} \; 1 = e^{t \; p.(\ln(x))} = \frac{x^t}{t!},$$

そう

$$e^{-(\alpha+\beta) \; IG} \;1 = e^{(\alpha+\beta) \; R_x} \; 1 = e^{(\alpha+\beta) \; p.(\ln(x))} = \frac{x^{\alpha+\beta}}{(\alpha+\beta)!}, $$

$$ = e^{-\alpha \; IG} e^{-\beta \; IG} \;1 = e^{-\alpha \; IG} \; \frac{x^\beta}{\beta!} , $$

確かにそれを特定することができます

$$e^{-\alpha \; IG} = D_x^{-\alpha}$$

そして

$$IG = \ln(D_x).$$

次に、PDをに適用します $\ln(D)$、形式主義のチェックおよびマトリックス担当者への道として、正式に与える

$$ [\ln(D),x] = [\ln(1-(1-D)),x] = \frac{1}{1-(1-D)} = \frac{1}{D} = D^{-1}.$$

これは、一般的な機能について整流子を評価することによって明確な意味を与えられます $g(x)$ の積分repを使用して、原点で分析します(これは「基底関数系」に一般化されます)。 $R_x = -\ln(D_x)$、与える

$$[\ln(D_x),x] \; g(x) = [-R_x,x] \; g(x) = (-\ln(x)+\lambda) \; [x,g(x)]$$

$$ + \int_{0}^{x}\frac{xg(x)-ug(u)}{x-u} \; du - x \int_{0}^{x}\frac{g(x)-g(u)}{x-u} \; du$$

$$ = \int_{0}^{x} \; g(u) \; du = D_x^{-1} g(x).$$

だから、私たちは持っています

$$[\ln(D_x),x] = [-R_x,x] = D_x^{-1} = [-\ln([-R_x,x]),x]$$

そして

$$-R_x = \ln(D_x) = -\ln(D_x^{-1}) = -\ln([-R_x,x]),$$

意味する

$$e^{R_x} =\exp[\ln([-R_x,x])] = [-R_x,x] = D_x^{-1}.$$

また、

$$\bigtriangledown^{s}_{n} \; c_n=\sum_{n=0}^{\infty}(-1)^n \binom{s}{n}c_n,$$

その後

$$R_x = -\ln(D_x) = \ln(D_x^{-1}) = \ln[1-(1-D_x^{-1})]$$

$$ = - \sum_{n \geq 1} \frac{1}{n} \; \bigtriangledown^{n}_{k} D_x^{-k}, $$

どこ

$$D_x^{-1} \frac{x^{\omega}}{\omega!} = \frac{x^{\omega+1}}{(\omega+1)!}.$$

有限差分opシリーズは導関数に埋め込まれています $D_{\alpha =0}$ニュートン補間

$$ \frac{x^{\alpha+\omega}}{(\alpha+\omega)!} = \bigtriangledown^{\alpha}_{n}\bigtriangledown^{n}_{k}\frac{x^{\omega+k}}{(\omega+k)!}$$

$$ = \bigtriangledown^{\alpha}_{n}\bigtriangledown^{n}_{k} D_x^{-k} \;\frac{x^{\omega}}{\omega!}$$

$$ = [1-(1-D_x^{-1})]^{\alpha} \; \;\frac{x^{\omega}}{\omega!} = D_x^{-\alpha}\;\frac{x^{\omega}}{\omega!}. $$

にとって $\alpha = -m$$m = 1,2,...$ そして $\omega = 0$、このニュートン補間器は

$$D^m_x \; H(x) = \delta^{(m-1)}(x) = H(x) \; \frac{x^{-m}}{(-m)!} = \bigtriangledown^{-m}_{n}\bigtriangledown^{n}_{k} D_x^{-k} \; H(x)$$

$$ = \sum_{n \geq 0} (-1)^n \binom{-m}{n} \bigtriangledown^{n}_{k} \; H(x) \frac{x^k}{k!} = H(x) \; \sum_{n \geq 0} (-1)^n \binom{-m}{n} \; L_n(x)$$

$$ = H(x) \; \sum_{n \geq 0} \binom{m-1+n}{n} \; L_n(x), $$

これは、分布の意味で、のラゲールの多項式決議と一致します。 $f(x) = \delta^{(m-1)}(x)$このMO-Qの公式では、$c_n = f_n$ そこの表記では、

$$ f(x) = \sum_{n \geq 0} c_n \; L_n(x)$$

$$\sum_{n \geq 0} t^n \; c_n = \frac{1}{1-c.t} = \int_0^{\infty} e^{-x} \sum_{n \geq 0} t^n \; L_n(x) f(x) \; dx$$

$$ = \int_0^{\infty} e^{-x} \frac{e^{-\frac{t}{1-t}x}}{1-t} f(x) \; dx = \int_0^{\infty} \frac{e^{-\frac{1}{1-t}x}}{1-t} f(x) \; dx,$$

だから、 $m$-ヘヴィサイド関数の3次導関数、

$$\frac{1}{1-c_{m,.}t}= \int_0^{\infty} e^{-x} \frac{e^{-\frac{t}{1-t}x}}{1-t} f(x) \; dx = \int_0^{\infty} \frac{e^{-\frac{1}{1-t}x}}{1-t} \delta^{(m-1)}(x) \; dx = \frac{1}{(1-t)^{m}},$$

したがって、のLaguerreシリーズ解像度の係数 $m$-ヘヴィサイド関数の3次導関数は

$$c_{m,n} =(-1)^n \binom{-m}{n} = \binom{m-1+n}{n},$$

ニュートン補間器と一致します。

申請中 $D_x^{-1}$ このアイデンティティの両側に繰り返し、収束補間を確立します。 $\omega = 1,2,3,...$、およびの二項式展開内で電力ベースで動作する $\frac{x^{\omega}}{\omega!} = \frac{(1-(1-x))^{\omega}}{\omega!}$ 収束式も与える必要があります。

同様に $\omega=0$、ラプラス変換(より正確には、FIDを標準導関数のメリン補間としてキャストできるラマヌジャンのマスター式の中心となる修正メリン変換)があります。

$$\frac{1}{1-c.t} = \int_0^{\infty} \frac{e^{-\frac{1}{1-t}x}}{1-t} \frac{x^{\alpha}}{\alpha!} \; dx = (1-t)^{\alpha},$$

にとって $Re(\alpha) > -1$、与える

$$c_n = (-1)^n \binom{\alpha}{n}.$$

このラプラス変換、したがってニュートン補間器は、いくつかの標準的な方法で解析接続できます(たとえば、実数直線からハンケルの積分路を介した複素平面へのブローアップ、アダマール有限部分)。$\alpha$。負の整数の指数の場合、ハンケルの積分路は、微分のために通常のコーシーの輪郭表現に縮小します。アダマール有限部分アプローチにより、ニュートン補間器をストリップごとに適切に修正して、意図した結果を得ることができます。

の有限差分担当者に戻る $\ln(D_x)$、1に対する無限大のアクションは、次のようになります。 $x > 0$

$$\ln(D_x) 1 = \sum_{n \geq 1} \frac{1}{n} \; \bigtriangledown^{n}_{k} D_x^{-k} 1$$

$$ = \sum_{n \geq 1} \frac{1}{n} \; \bigtriangledown^{n}_{k} \frac{x^k}{k!}$$

$$ = \sum_{n \geq 1} \frac{1}{n} \; L_n(x) = -\ln(x)-.57721... , $$

どこ $L_n(x)$ はラゲールの多項式であり、問​​題のB&Dの最初の方程式と一致しています。

で切り捨てられた演算子系列の評価結果のプロット $n=80$、またはそう、行動する $x^2$ そして $x^3$ 分析結果にも一致します。

マトリックス担当者 $M$ この統合操作のアクションの $D_x^{-1}$ オン $x^n$ 累乗ベースで十分に単純です-要素を使用した、左または右の行列乗算に応じて、最初のサブ対角線または超対角線を除くすべてゼロの行列 $(1,1/2,1/3,...)$

のマトリックス担当者 $R_x$ その後です

$$ R_M = \ln[I-(I-M)] = - \sum_{n \geq 1} \frac{1}{n} \; \bigtriangledown^{n}_{k} M^k. $$

べき乗、

$$D_x^{-\beta} = \exp(-\beta R_x)= (1-(1-D_x^{-1} ) )^{\beta} = \bigtriangledown^{\beta}_{n} \bigtriangledown^{n}_{k} (D_x^{-1})^k.$$

関連するマトリックス担当者は

$$ \exp(-\beta R_M)= \bigtriangledown^{\beta}_{n} \bigtriangledown^{n}_{k} M^k.$$

(MathCadディスクが別の状態で保存されているため、通常のようにこれらのマトリックス計算を数値で確認していません。)

の非整数の力に基づいて行動する $x$、二項式展開のように、整数の累乗の重ね合わせとしてそれらを表す必要があります

$$x^{\alpha} = [1 - (1-x)]^{\alpha} = \bigtriangledown^{\alpha}_{n} \bigtriangledown^{n}_{k} x^k .$$

または、に戻ります $z$ 担当者とレイズオペレーションのマトリックス担当者を書き留めます $R_z$。これは、すべてのものの最初の超対角線で拡張された無限下三角パスカル行列の単純な変換です。OEIS A039683には、多項式列への別のアプローチ(Riordan?)の生成行列としても知られる、単項式の累乗基底での上昇opに相当する行列の例があります。この場合、分割電力ベースに切り替える方が良いです$z^n/n!$。次に、拡張されたパスカル行列は、すべてのものの単純な合計行列になります。n番目の対角線に沿って乗算します$c_n$ どこ $(c_0,c_1,..) = (1-\lambda,-\zeta(2),...,(-1)^k \; \zeta(k+1),...)$ 発生するopの行列repを生成しますが、たとえば、 $x^2=e^{2z}$、これは、有限差分表現と比較して、すぐに適用する厄介なアルゴリズムになります。


その他の参考資料(網羅的ではありません):

  1. リーマンゼータ関数と分数階微積分、MO-Q
  2. ディガンマ/ Psi関数、Wiki
  3. 微分演算子のログに関するOEISA238363
  4. サイクルインデックス多項式と対称関数に関するOEISA036039
  5. ゼータ関数とサイクルインデックス多項式、MO-Q
  6. FIDの引き上げについて、MSE-Q
  7. 行列無限大辞典上のOEISA132440
  8. Appellレイズオペレーションのパーティション多項式担当者に関するOEISA263634
  9. 導関数の対数の別のinterp、pdfの参照
  10. 階乗のガンマ関数MSE-Qへの内挿/解析接続
  11. アペルシーケンスの運用を増やす、ブログ投稿
  12. のメリン補間の例 $e^{tD}$、MO-Q
  13. 差分演算の補間/解析接続の詳細については、ブログ投稿をご覧ください。
  14. 母関数MO-Qの係数の2つの解析接続
  15. FIDとコンフルエントな超幾何関数、MO-Q
  16. ブログ投稿のパンシェルル微分に関する注記
  17. FIDと二項係数の補間、ブログ投稿
  18. FID、補間、進行波、ブログ投稿

Related questions

MORE COOL STUFF

ケイト・ブランシェットは3日間一緒に夫と一緒に寝て、25年経ってもまだ夫と結婚しています

ケイト・ブランシェットは3日間一緒に夫と一緒に寝て、25年経ってもまだ夫と結婚しています

ケイト・ブランシェットは、夫に会ったとき、典型的な交際のアドバイスに逆らいました。

マイケルシーンが非営利の俳優である理由

マイケルシーンが非営利の俳優である理由

マイケルシーンは非営利の俳優ですが、それは正確にはどういう意味ですか?

ホールマークスターのコリンエッグレスフィールドがRomaDramaLiveでスリル満点のファンと出会う![エクスクルーシブ]

ホールマークスターのコリンエッグレスフィールドがRomaDramaLiveでスリル満点のファンと出会う![エクスクルーシブ]

特徴的なスターのコリン・エッグレスフィールドは、RomaDrama Liveでのスリル満点のファンとの出会いについて料理しました!加えて、大会での彼のINSPIREプログラム。

「たどりつけば」をオンラインでストリーミングできない理由

「たどりつけば」をオンラインでストリーミングできない理由

ノーザンエクスポージャーが90年代の最も人気のある番組の1つになった理由を確認するには、Blu-rayまたはDVDプレーヤーをほこりで払う必要があります。

バイオニック読書はあなたをより速く読むことができますか?

バイオニック読書はあなたをより速く読むことができますか?

BionicReadingアプリの人気が爆発的に高まっています。しかし、それは本当にあなたを速読術にすることができますか?

ドミニカのボイリング湖:アクセスは簡単ではありませんが、ハイキングする価値があります

ドミニカのボイリング湖:アクセスは簡単ではありませんが、ハイキングする価値があります

ドミニカのボイリング湖は、世界で2番目に大きいボイリング湖です。そこにたどり着くまでのトレッキングは大変で長いですが、努力する価値は十分にあります。

私たちの水をきれいに保つのを助けるためにあなたの髪を寄付してください

私たちの水をきれいに保つのを助けるためにあなたの髪を寄付してください

サロンからのヘアトリミングや個人的な寄付は、油流出を吸収して環境を保護するのに役立つマットとして再利用できます。

ホワイトハウスの最も記憶に残る結婚式を見てください

ホワイトハウスの最も記憶に残る結婚式を見てください

過去200年以上の間にホワイトハウスで結婚したのはほんの数人です。彼らは誰でしたか、そしてそこで結婚式を獲得するために何が必要ですか?

今週のコミックコンですべての素晴らしいものに追いつく方法

今週のコミックコンですべての素晴らしいものに追いつく方法

サンディエゴコミックコンは今週開幕し、オタクのアナウンス、ポスター、予告編、お気に入りの番組や映画のからかいでいっぱいになります。SDCCは、コンベンションフロア全体の多くのパネルで行われているため、すべてに対応するのは難しい場合があります。

Googleの9千万ドルの和解はアプリ開発者にとってもGoogleにとっても勝利ですか?

Googleの9千万ドルの和解はアプリ開発者にとってもGoogleにとっても勝利ですか?

小さなアプリ開発者は金曜日に発表された法的な和解でグーグルから9千万ドルをこじ開けた。アップルとの同様の合意に続いて熱くなった。金曜日のブログ投稿で、Googleは、Androidメーカーが市場での優位性を悪用してPlayストア経由でのアプリ内購入に対して30%の料金を不当に請求したと主張するアプリ開発者との訴訟を解決するために、9千万ドルを支払うことに合意したと述べました。

RadioShackのTwitterはハッキングされていませんでした、それはただの暗号のサクラです

RadioShackのTwitterはハッキングされていませんでした、それはただの暗号のサクラです

今週、RadioShackのTwitterアカウントは、奇妙なものから完全にひどいものになりました。短い順序で、会社のフィード全体が、バイブレーター、「ビッグティット」(スペルミス)、有名人やその他の企業アカウントを荒らしているツイートなど、NSFW素材の真の山になりました。

ヒッグス粒子から10年後、物理学にとって次の大きなものは何ですか?

ヒッグス粒子から10年後、物理学にとって次の大きなものは何ですか?

大型ハドロン衝突型加速器のトンネル内にあるコンパクトミュオンソレノイド(CMS)検出器。2012年7月4日、CERNの科学者たちは、1960年代に最初に提案された素粒子であるヒッグス粒子の観測を確認しました。

Zendaya Wishes Boyfriend Tom Holland Happy Birthday with Cuddly Photo: He 'Makes Me the Happiest'

Zendaya Wishes Boyfriend Tom Holland Happy Birthday with Cuddly Photo: He 'Makes Me the Happiest'

Zendaya shared a sweet photo in honor of boyfriend Tom Holland's 26th birthday Wednesday

小さな女性:脳卒中を患った後に病院から解放されたアトランタのジューシーな赤ちゃん:「まだ癒し」

小さな女性:脳卒中を患った後に病院から解放されたアトランタのジューシーな赤ちゃん:「まだ癒し」

シーレン「Ms.JuicyBaby」ピアソンは、先月脳卒中で入院した後、「もう一度たくさんのことをする方法を学ばなければならない」ため、言語療法を受けていることを明らかにしました。

エマストーンは彼女のクリフサイドマリブビーチハウスを420万ドルでリストアップしています—中を見てください!

エマストーンは彼女のクリフサイドマリブビーチハウスを420万ドルでリストアップしています—中を見てください!

オスカー受賞者の世紀半ばの家には、3つのベッドルーム、2つのバス、オーシャンフロントの景色があります。

ジーニー・メイ・ジェンキンスは、母乳育児の経験の中で、彼女は「本当に、本当に落ち込んでいる」と言います

ジーニー・メイ・ジェンキンスは、母乳育児の経験の中で、彼女は「本当に、本当に落ち込んでいる」と言います

ジーニー・メイ・ジェンキンスは、生後4か月の娘、モナコに母乳育児をしていると語った。

Un breve viaje espacial sobre conceptualizar el diseño

Complicarse la vida, mezclar churros con meninas (nada de ovejas) y encontrar valor en un trastero que adquiriste en una puja.

Un breve viaje espacial sobre conceptualizar el diseño

Bien. Hay un momento en toda salida al espacio exterior en el que de la tensión, la velocidad y las altas temperaturas derivadas del cruce de estratosfera a ionosfera se pasa a un momento de súbita calma, donde se despliega la vista completa del paisaje espacial que nos rodea.

Seguindo Todos os Protocolos (2022), de Fábio Leal

Seguindo Todos os Protocolos (2022), de Fábio Leal

Chico quer transar. Até aí, tudo bem.

多元宇宙—Junø

多元宇宙—Junø

チェーン間アカウントがJunoに登場します。異なるブロックチェーン間でスマートコントラクトの構成可能性と真の相互運用性を提供します。

#brand【ベター・コール・ソール!アメリカのテレビシリーズ「ブレイキング・バッド」に最高のビジネス例が隠されている】・・・ルールクリエイティブ

#brand【ベター・コール・ソール!アメリカのテレビシリーズ「ブレイキング・バッド」に最高のビジネス例が隠されている】・・・ルールクリエイティブ

1.ドラマを見た後、起業する考えはありますか?あなたのビジネスはボトルネックに遭遇しましたか?方向性がなくてわからない場合は、ドラマを追いかけて行くことを心からお勧めします。(?)ブラフではなく、最も完璧なビジネス例を隠すドラマがあります。2.ブレイキング・バッドとその弁護士ドラマ「ブレイキング・バッド」を見た友人たちは、演劇の中で、穏やかな表情で、弁護士のソウル・グッドマンに深く感銘を受けなければなりません。口を開けて、感覚の弱い傭兵の性格を持っています。道徳の面で、サル・グッドマンは無意識のうちに劇に欠かせない役割を果たし、彼自身のシリーズ「絶望的な弁護士」(ベター・コール・ソール)を生み出しました。ウェントウのテキストとビデオは、劇中のソウル・グッドマンのテレビコマーシャルです。製品(サービス)、競争戦略、市場ポジショニング、ブランド名、ターゲット顧客グループ、コミュニケーション軸から広告まで、サル・グッドマンの役割のビジネス設定は、「最低」と見なすことができる超超超超超超完全です。ブランドコミュニケーションのコスト」「変化」のモデル。なぜ?私の分析をご覧ください。3.ソウル・グッドマンの「事業戦略」1.基本情報ブランド名:Saul Goodman製品:法律相談サービス対象顧客:麻薬中毒、飲酒運転、事故など。法律知識の欠如は、一般的に公立弁護士にしか余裕がなく、真面目な弁護士も「特別な法律を持つ消費者」を避けます。恐れてはいけない「​​ニーズ」。コミュニケーションの主軸:この国のすべての男性、女性、子供は有罪判決を受けるまで無実だと思います。地域:アルバカーキ市スローガン:Thrallに電話したほうがいいです!(ベター・コール・ソール)広告:2つの可能性のある犯罪状況をシミュレートします+サウルの主張+サウルのスローガン2をより適切に呼び出します。

Language