凸四角形上の特定の点のセットが、その四角形の内側にフィットする楕円の有効な接点であるかどうかをどのように知ることができますか?

3
Audus 2020-09-11 18:50.

四辺形の両側に1つのポイントが指定されています。楕円は四辺形に含まれています。

線形遠近法を使用して図面に楕円をプロットするときは、最初に四角形を作成し、次に接点を推定してから、楕円をプロットするので、これに興味があります。それらの接点をチェックして、それらが有効であることを確認する方法があると便利です。

下の画像を例にとると、凸四角形ABCD上の点E、F、G、およびHが与えられた場合、これらすべての点に接する楕円を作成する方法がわかりません。与えられた点のセットが試行錯誤なしに与えられた四辺形に楕円を構築できる/できないかどうかを知るための公式/アルゴリズムの方法はありますか(GeoGebraのようなアプリで)?

2 answers

5
Intelligenti pauca 2020-09-12 12:07.

凸四角形は、適切な遠近法変換によって正方形にマッピングできます。次に、四角形に内接する楕円は、正方形に内接する楕円にマッピングされ、その軸は正方形の対角線に沿っています(下の図を参照)。

この場合、接点を通る線 $P$ そして $R$、側面に平行 $CD$ そして $BC$ それぞれ、対角線と交差します $AC$ 同じ時点で $V$。また、接点$P$$Q$ 中心に揃えられます $O$ 正方形の、そして同じことが他の2つの接点にも当てはまります $R$ そして $S$

透視変換は点の共線性を維持するため、接線点のこれらのプロパティは、一般的な凸四角形に内接する楕円の場合に再解釈できます(下の図を参照)。

$CD$$AB$$PV$ 現在同意しています、そして同じことがラインにも起こります $BC$$AD$$RV$。ポイント$POQ$ 整列されているだけでなく $ROS$。したがって、接点を修正すると、他の接点はこれらのプロパティによって一意に決定されます。

2
Lorenzo Najt 2020-09-12 11:06.

コメントで述べたように、射影変換を適用して、四角形を正方形に変えることができます。これが機能するのは、楕円を境界を維持する射影変換でヒットした場合、楕円のままになるためです。それで、これからそのケースに対処します。

の4つの側面をしましょう $S$ 示される $S_R, S_L,S_T, S_B$、下付き文字は右、左、上、下を表します。それを仮定しましょう$S_B$ それは $x$-軸; これは後で表記上便利になります。

質問は:与えられた $p_i \in S_i$$i \in \{R,L,T,S\}$、の4辺に接する内接楕円はありますか $p_i$

この方程式を決定する(そして存在する場合は楕円を生成する)アルゴリズムを以下にスケッチします。物語の教訓は、それが線形代数の問題であるということです。

楕円 $E$ 一般式があります: $$a x^2 + by^2 + c xy + dx + ey + f= 0.$$

仮定すると $f \not = 0$、に正規化できます $1$。(射影座標を使用すると、この厄介なケース分析を回避できます。)このケースにいると仮定し、他のケースはあなたに任せます。したがって、方程式は次のようになります。

$$a x^2 + by^2 + c xy + dx + ey + 1= 0.$$

ここには5つの変数があるため、座標を持つ5次元のベクトル空間があることに注意してください。 $(a,b,c,d,e)$

ポイントを考慮してください $p_i = (x_i, y_i)$。場合$p_i \in E$、その後 $a x_i^2 + by_i^2 + c x_iy_i + dx_i + ey_i + 1 = 0.$ ザ・ $x_i, y_i$ は固定数なので、これは変数の線形方程式です $(a,b,c,d,e)$

そのような方程式は4つあります。それらの解のセットは、線形代数で計算できる線(脚注(*)を参照)になります。

ここで、次の条件を調べます。 $E$ は正方形の底辺に接しています。つまり、 $x$-軸。ザ・$x$-軸は次の方程式で定義されます $y = 0$、したがって、方程式を定義する $E$ になります $q(x) = ax^2 + dx + 1 = 0$ に制限するとき $x$-軸。

ここから先に進む1つの方法は、この2次方程式が $x$-二次式の場合の軸 $q$ 判別式が消えた場合に発生する二重根を持ちます。 $d^2 - 4a = 0$。ただし、追加情報があるため、これは無駄です。特に、私たちはそれを知っています$q(x)$ 特定のポイントで接線方向に接触する必要があります $p_B$。特に、次の導関数が必要です。$q$ で消える $x_B$

つまり、もう1つの条件があります。 $q'(x) = 2a x + b$ で消える $x_B$、または $2ax_B + b = 0$

これにより、一般に5つの方程式が得られ、1つの円錐曲線に切り詰められます。これは、希望する楕円である可能性があります。楕円に対応するかどうかを確認するには、次のことができます。

  1. 正方形を(象徴的に)完成させることにより、それが楕円であるかどうかをテストします。
  2. 他の3つの接線条件に対してそれぞれをテストします。
  3. また、4つの辺のそれぞれに制限された楕円が、2次項の前に正しい符号が付いた2次式を与えることを確認することにより、4行すべての右側にあることを確認できます。

円錐曲線がこれらのテストに合格した場合、それはあなたの問題の解決策です。そうでなければ、与えられた仕様の解決策はありません$p_i$

これらのテストは冗長になる可能性が高いと思います。特に、4つの間隔に接する楕円はその内側になければならないと思うので、おそらく3番目の条件を取り除くことができます。

(*)条件が共謀せず、ポイントの悪い選択に対して線形従属になることを証明できると思います。あなたの修正$p_i$。次に、円錐曲線が通過します$p_L$ だがしかし $p_B$。また、通過する円錐曲線があります$p_L$ そして $p_B$、 だがしかし $p_R$。最後に、通過する円錐曲線があります$p_L, p_B, p_R$ だがしかし $p_U$。私はこれらのステートメントを正式に検証しませんでした。放物線と円を使って落書きをしただけなので、この点を再確認します。これらの交点の1つが接線であるという最終的な線形条件を課すことに関しても同じことが言えると思います。

これが正しければ、これらの条件の1つを追加するたびに、必然的にいくつかの円錐曲線が削除されます。つまり、新しい制約を課すと、スペースの次元が低下します。

より代数的で信頼できる議論は、これらの中間条件のそれぞれを達成する円錐曲線のシーケンスを方程式を明示的に構築することです。

備考次のことが当てはまると思います。$x \in S_B$ 接線方向に内接する独特の楕円があります $S$ 含まれています $x$、提供 $x$角にありません。したがって、実際には、制約を満たす楕円の間隔があります。しかし、これについてはよくわかりません。射影幾何学を介して、上記の議論は独自性を与えると思います。通過する楕円を膨らませることについての半分裏付けられた議論を通して、私は存在を確信しました$x$ との対蹠地 $x$ 正方形の中点あたりですが、簡単に形式化できるかどうかはわかりません。

Related questions

MORE COOL STUFF

ケイト・ブランシェットは3日間一緒に夫と一緒に寝て、25年経ってもまだ夫と結婚しています

ケイト・ブランシェットは3日間一緒に夫と一緒に寝て、25年経ってもまだ夫と結婚しています

ケイト・ブランシェットは、夫に会ったとき、典型的な交際のアドバイスに逆らいました。

マイケルシーンが非営利の俳優である理由

マイケルシーンが非営利の俳優である理由

マイケルシーンは非営利の俳優ですが、それは正確にはどういう意味ですか?

ホールマークスターのコリンエッグレスフィールドがRomaDramaLiveでスリル満点のファンと出会う![エクスクルーシブ]

ホールマークスターのコリンエッグレスフィールドがRomaDramaLiveでスリル満点のファンと出会う![エクスクルーシブ]

特徴的なスターのコリン・エッグレスフィールドは、RomaDrama Liveでのスリル満点のファンとの出会いについて料理しました!加えて、大会での彼のINSPIREプログラム。

「たどりつけば」をオンラインでストリーミングできない理由

「たどりつけば」をオンラインでストリーミングできない理由

ノーザンエクスポージャーが90年代の最も人気のある番組の1つになった理由を確認するには、Blu-rayまたはDVDプレーヤーをほこりで払う必要があります。

バイオニック読書はあなたをより速く読むことができますか?

バイオニック読書はあなたをより速く読むことができますか?

BionicReadingアプリの人気が爆発的に高まっています。しかし、それは本当にあなたを速読術にすることができますか?

ドミニカのボイリング湖:アクセスは簡単ではありませんが、ハイキングする価値があります

ドミニカのボイリング湖:アクセスは簡単ではありませんが、ハイキングする価値があります

ドミニカのボイリング湖は、世界で2番目に大きいボイリング湖です。そこにたどり着くまでのトレッキングは大変で長いですが、努力する価値は十分にあります。

私たちの水をきれいに保つのを助けるためにあなたの髪を寄付してください

私たちの水をきれいに保つのを助けるためにあなたの髪を寄付してください

サロンからのヘアトリミングや個人的な寄付は、油流出を吸収して環境を保護するのに役立つマットとして再利用できます。

ホワイトハウスの最も記憶に残る結婚式を見てください

ホワイトハウスの最も記憶に残る結婚式を見てください

過去200年以上の間にホワイトハウスで結婚したのはほんの数人です。彼らは誰でしたか、そしてそこで結婚式を獲得するために何が必要ですか?

驚くほど素晴らしいDropMixミュージックミキシングカードゲームは30ドルで驚くべき取引です

驚くほど素晴らしいDropMixミュージックミキシングカードゲームは30ドルで驚くべき取引です

DropMixはNFC対応のカードゲームで、基本的にはリミックスアーティストになります。現在、Amazonでは$ 30まで下がっており、これまでで最高の価格に匹敵します。ロックバンドで有名なHarmonixによって開発されたDropMixは、おそらく少し野心的すぎるように思われます。結局のところ、ほとんどの人は素晴らしいリズムを持っていませんが、ゲームは驚くほどうまく実行されます。

メアリーJ.ブライジがついにハリウッドウォークオブフェイムスターを獲得

メアリーJ.ブライジがついにハリウッドウォークオブフェイムスターを獲得

写真:APメアリーJ.ブライジは、間もなくハリウッドウォークオブフェイムのスターを獲得します。これは、メアリーJよりもハリウッドウォークオブフェイムのほうが正直なところ恩恵です。

MeltdownとSpectreの脆弱性についてこれまでに知っていることはすべて、簡単な方法で説明されています

MeltdownとSpectreの脆弱性についてこれまでに知っていることはすべて、簡単な方法で説明されています

画像:グラズ工科大学/ NataschaEiblがデザインしたロゴ。MeltdownとSpectreは、攻撃者がシステムメモリに保存されているあらゆる種類の情報にアクセスできるようにする2つの脆弱性に付けられた名前です。

彼のニューヨークの家から追い出されようとしている97歳の第二次世界大戦の獣医。メリーエフィングクリスマス

彼のニューヨークの家から追い出されようとしている97歳の第二次世界大戦の獣医。メリーエフィングクリスマス

日本人に襲われたときに真珠湾にいた97歳の第二次世界大戦のベテランが、ニューヨークのブルックリンから追い出されています。

Zendaya Wishes Boyfriend Tom Holland Happy Birthday with Cuddly Photo: He 'Makes Me the Happiest'

Zendaya Wishes Boyfriend Tom Holland Happy Birthday with Cuddly Photo: He 'Makes Me the Happiest'

Zendaya shared a sweet photo in honor of boyfriend Tom Holland's 26th birthday Wednesday

小さな女性:脳卒中を患った後に病院から解放されたアトランタのジューシーな赤ちゃん:「まだ癒し」

小さな女性:脳卒中を患った後に病院から解放されたアトランタのジューシーな赤ちゃん:「まだ癒し」

シーレン「Ms.JuicyBaby」ピアソンは、先月脳卒中で入院した後、「もう一度たくさんのことをする方法を学ばなければならない」ため、言語療法を受けていることを明らかにしました。

エマストーンは彼女のクリフサイドマリブビーチハウスを420万ドルでリストアップしています—中を見てください!

エマストーンは彼女のクリフサイドマリブビーチハウスを420万ドルでリストアップしています—中を見てください!

オスカー受賞者の世紀半ばの家には、3つのベッドルーム、2つのバス、オーシャンフロントの景色があります。

ジーニー・メイ・ジェンキンスは、母乳育児の経験の中で、彼女は「本当に、本当に落ち込んでいる」と言います

ジーニー・メイ・ジェンキンスは、母乳育児の経験の中で、彼女は「本当に、本当に落ち込んでいる」と言います

ジーニー・メイ・ジェンキンスは、生後4か月の娘、モナコに母乳育児をしていると語った。

投資ノート:Bioscout AU$300万シード

投資ノート:Bioscout AU$300万シード

Bioscoutは、農家を運転席に置くという使命を負っています。Artesian(GrainInnovate)やUniseedと並んで、最新のシードラウンドでチームを支援できることをうれしく思います。問題真菌症による重大な作物の損失は、農民にとって試練であることが証明されています。

リトルマーケットリサーチ1| 2022年のクイックグリンプス遠隔医療市場

リトルマーケットリサーチ1| 2022年のクイックグリンプス遠隔医療市場

遠隔医療は、パンデミック後の時代では新しいものではなく、時代遅れの分野でもありません。しかし、業界を詳しく見ると、需要と供給の強力な持続可能性と、米国で絶え間ない革命となる強力な潜在的成長曲線を示しています。

スタートアップ資金調達環境:タイのスタートアップエコシステムの次は何ですか?

スタートアップ資金調達環境:タイのスタートアップエコシステムの次は何ですか?

2021年は、世界的なベンチャーキャピタル(VC)の資金調達にとって記録的な年でした。DealStreetAsiaによると、東南アジアも例外ではなく、この地域では年間で記録的な25の新しいユニコーンが採掘されました。

ムーアの法則を超えて

ムーアの法則を超えて

計算に対する私たちの欲求とムーアの法則が提供できるものとの間には、指数関数的に増大するギャップがあります。私たちの文明は計算に基づいています—建築と想像力の現在の限界を超える技術を見つけなければなりません。

Language