によって保存された二次曲面 $SO(3)$ アクション $\mathbb{P}^6$

2
cupoftea 2020-08-29 21:47.

免責事項:この質問は、この1つのの軌道 $SO(3)$-より正確な-バージョン の軌道 $SO(3)$、ユーザーの助けを借りて、私は物事を正確に書き留めていないことに気づきました。これはもっと深刻な試みです。

私たちは複素数の分野に取り組んでいます。定義する$SO(3)$ なので $$SO(3)=\{A\in Gl(3,\mathbb{C}\mid A^t Q A=Q,\text{ }\det(A)=1\},$$ どこ $Q$ それは $3\times 3$-matrix \ begin {pmatrix} 0&0&1 \\ 0&1&0 \\ 1&0&0 \\ \ end {pmatrix} は、二次曲面に関連付けられた双線形形式です。$C$ として定義する $x_0x_2+x_1^2=0$

のアクションを検討してください $SO(3)$ オン $\mathbb{P}^2(\mathbb{R})$、同次座標 $x_0,x_1,x_2$、形式の $$SO(3)\times\mathbb{P}^2\to \mathbb{P}^2$$ $$(A,p)\mapsto Ap$$ 私はそれを証明しなければなりません $p\in C$、の軌道 $p$ です $C$、 あれは $SO(3)p\simeq C$。そうするために、以来$SO(3)/SO(3)_p\simeq SO(3)p$、商が $$SO(3)/SO(3)_p\simeq C$$ そうするために私は簡単にするためにポイントを考えました $p=(1:0:0)$、そして私はそれを見つけました $$SO(3)_p=\{A\in SO(3)\mid \text{the first column of $A$ is equal to $p$}\}.$$ 結論を出すために、私はポイントを与えられてそれを示す必要があります $y\in C$、行列が存在します $B\in SO(3)$ そのような $Bp=y$、つまりの最初の列 $B$ に等しい $y$。残念ながら、行列式の行列を作成する方法がわからないため、行き詰まりました。$1$ 単に列から $y$

最後に、私は非常に(ばかげた)質問をします:そうするために、私はポイントを考慮しました $p$二次曲面に属する; 私が選択した場合$p\not\in C$、軌道を考えることができます $SO(3)p$:その場合 $SO(3)p=\mathbb{P}^2\setminus C$?前もって感謝します。

1 answers

2
John Hughes 2020-08-30 01:50.

開発中の回答-まだ完了していません

ああ。これははるかに理にかなっていますが、その特定のものを呼び出すのは少し奇妙だと思います$SO(3)$、これからはシンボルを使用することを決定するのと少し似ています $8$ 私たちが通常表す整数の後継を示すために $22$。とにかく、それを手放すと、以前とほぼ同じ議論が機能します。新しいシンボルを定義したい、$\odot$、ベクトルについては $v$ そして $w$ 3空間で、 $$ v \odot w = v^t Q w. $$

今それに注意してください $Qw$ ただ $w$ 1番目と3番目のエントリが入れ替わっているので、これを明示的に書き留めるのは非常に簡単です。 $$ \pmatrix{a\\b\\c} \odot \pmatrix{u\\v\\w} = aw + bv + cu. $$ これにより、何度も使用する結果が得られます。ベクトルの場合 $\alpha$ そして $\beta$ 直交している(つまり、 $\alpha \cdot \beta = 0$)、次に $\alpha$ そして $\beta'$、 どこ $\beta'$ ただ $\beta$ 最初と3番目のエントリが入れ替わっていますが、実際には $\odot$-直交、すなわち、 $$\alpha \odot \beta' = 0.$$

それを仮定しましょう $A = \pmatrix{a\\b\\c}$ あなたの曲線のポイントです $C$、 そのため $A \odot A = 0$。行列を見つけたい$M \in SO(3)$$A$ (またはのスカラー倍 $A$)最初の列として。

貸します $U = \pmatrix{u\\v\\w}$、および $R = \pmatrix{r\\s\\t}$ 2列目と3列目を示します。つまり、数字を見つけることを意味します。 $u,v,w,r,s,t$ そのような \begin{align} A \odot A &= 0 & A \odot U &= 0 & A \odot R &= 1 \\ & & U \odot U &= 1 & U \odot R &= 0 \\ & & & & R \odot R &= 0 \\ \end{align} 対称性のために他の3つの製品を省略しました。幸いなことに、満たすべき6つの等式と、6つの自由変数があります。実際には、7番目があります:乗算することができます$A$ by any constant and still have the same point of the curve $C$, so for the first row, for instance, doing so won't change $A \odot U = 0$, but it can be used to adjust $A \odot R$ from "some nonzero number" to $1$.

Now let's specialize a little bit: I'm going to assume that $b \ne 0$. Then the equation of $C$, namely $xz + y^2 = 0$ tells us that both $a$ and $c$ are nonzero. The remaining cases, where $b = 0$, are $\pmatrix{0\\0\\1}, \pmatrix{1\\0\\0}.$ These can be solved by hand, which I leave to you as an instructive exercise. I'll call those "exceptional" points, and the other points of $C$ (those with $b \ne 0$) the "good" points, just to have a name.

Having restricted to $b \ne 0$, we can write all possible good points in the form $\pmatrix{a\\b\\-b^2/a}$, or equivalently (up to scale) in the form $$ \pmatrix{a^2 \\ ab \\ -b^2}. $$

I want to address finding $R$ first, because it seems to be harder. We need $R \odot R = 0$, so $R$ must be a good point, and $A \odot R = 1$, a linear constraint on $R$. Now for $R$ to be a good point, some multiple of it must have the form $$ \pmatrix{u^2 \\ uv \\ -v^2}, $$ and then $A \odot R = 1$ becomes \begin{align} 1 &= -a^2v^2 + abuv -b^2 u^2\\ -1 &= (av)^2 - (av)(bu) + (bu)^2\\ -1 &= (av - bu)^2 + (av)(bu)\\ \end{align}

Abandoned for now

SCRATCH WORK follows.

Now pick $U_0 = \pmatrix{a\\0\\-c}$

The other observation is that if we're working sequentially, there's not a lot of constraint on $U$ initially --- it has to be $\odot$-orthogonal to $A$, and have $\odot$-squared-length $1$. So we can just pick ANYTHING that's $\odot$-orthogonal, and then adjust its length.

Anyhow, let's get moving. The vector $A$ is nonzero, so we can pick some unit vector $\alpha$ such that $A \cdot \alpha = 0$. (My answer to your prior question gives one method, using a gram-schmidt-like technique.) A typical method might be to take any two entries of $A$, at least one nonzero, swap them and negate one, and set the third entry to $0$, and call that new vector $\beta$; then you observe that $A \cdot \beta = 0$. And then you let $\alpha = \beta / \| \beta \|$ to get yourself a unit vector in that direction. Anyhow, ANY unit vector $\alpha$ perpendicular to $A$ will suffice. Now let $$ U_0 = Q \alpha, $$ i.e., let $U$ be $\alpha$ with its first and third entries swapped. At this point, we have $A \cdot \alpha = 0$, so we also know that $A \odot U_0 = 0$. We've fixed up that $(1,2)$ entry in our system of equations.

What about $U_0 \odot U_0 = 1$? That might be true, or it might not. The case $U_0 \odot U_0 = 0$ is a special one; let's assume that's not true (i.e., that we picked $U_0$ wisely, or got lucky, or something. In that case, let $U_0 \odot U_0 = d \ne 0$, and picking either square root, let $$ U = \frac1{\sqrt{d}} U_0. $$ Then by bilinearity of $\odot$, we have $A \odot U = 0$ (i.e., our success with the $(1,2)$ entry is unchanged), but now we also know that $$ U \odot U = 1 $$ i.e., we've got the $(2,2)$ entry in our system of equations satisfied.

Now we need to find a vector $R$ for which $A \odot R = 1, U \odot R = 0, R \odot R = 0$.}

MORE COOL STUFF

ダイアナ妃は、8歳でウィリアム王子を寄宿学校に送るという決定に「涙を流した」

ダイアナ妃は、8歳でウィリアム王子を寄宿学校に送るという決定に「涙を流した」

ウィリアム王子が 8 歳のときに寄宿学校に通わせたことについて、ダイアナ妃がどのように感じたかを学びましょう。

シャキール・オニールは、レイカーズのスターが彼のチキン帝国を北テキサスに拡大するにつれて、ダラスの外に永住権を購入しました

シャキール・オニールは、レイカーズのスターが彼のチキン帝国を北テキサスに拡大するにつれて、ダラスの外に永住権を購入しました

Shaquille O'Neal は最近、Big Chicken レストラン帝国を拡大するため、ダラス郊外に住居を購入しました。

「90 日間の婚約者」: イヴが逮捕され、浮気スキャンダルの後、モハメドに対する家庭内暴力の容疑に直面している — 何が起こったのか?

「90 日間の婚約者」: イヴが逮捕され、浮気スキャンダルの後、モハメドに対する家庭内暴力の容疑に直面している — 何が起こったのか?

「90日の婚約者」シーズン9のスター、イヴ・アレラーノが逮捕され、モハメド・アブデルハメドへの暴行容疑で家庭内暴力の罪に問われている.

ナターシャ・リオンは、ピーウィー・ハーマンは「ビジネスで最高のGIFを送る」と言います

ナターシャ・リオンは、ピーウィー・ハーマンは「ビジネスで最高のGIFを送る」と言います

ナターシャ・リオンは、ピーウィー・ハーマン自身、ポール・ルーベンスと親密です。彼らの友情について彼女が言ったことを発見してください。

セントヘレナのジェイコブのはしごを登るのは、気弱な人向けではありません

セントヘレナのジェイコブのはしごを登るのは、気弱な人向けではありません

セント ヘレナ島のジェイコブズ ラダーは 699 段の真っ直ぐ上る階段で、頂上に到達すると証明書が発行されるほどの難易度です。

The Secrets of Airline Travel Quiz

The Secrets of Airline Travel Quiz

Air travel is far more than getting from point A to point B safely. How much do you know about the million little details that go into flying on airplanes?

Where in the World Are You? Take our GeoGuesser Quiz

Where in the World Are You? Take our GeoGuesser Quiz

The world is a huge place, yet some GeoGuessr players know locations in mere seconds. Are you one of GeoGuessr's gifted elite? Take our quiz to find out!

バイオニック読書はあなたをより速く読むことができますか?

バイオニック読書はあなたをより速く読むことができますか?

BionicReadingアプリの人気が爆発的に高まっています。しかし、それは本当にあなたを速読術にすることができますか?

Razer Phoneレビュー:ゲーム用電話を作る正しい方法

Razer Phoneレビュー:ゲーム用電話を作る正しい方法

ゲーム中心のスマートフォンを作成する以前の試みには、スライド式ゲームコントローラーを備えた電話、Sony PlayStationPortableと電話とNokiaN-Gageのクロスが含まれます。Razerは、最初のゲーミングフォンとして、見事なディスプレイと優れたスピーカーを備えた強力な黒い長方形を採用しました。

2018年のビデオゲームの予測

2018年のビデオゲームの予測

キングダムハーツIII私たち全員が核のホロコーストで死ぬわけではないと仮定すると、ビデオゲームは2018年に何をもたらすでしょうか?今週のKotakuSplitscreenで、いくつかの予測の時間です。最初のカークと私は、Gravity Rush 2ファン、警察のスワッティングコールで死にかけている罪のない男、そして以前のローガンポールの激しい論争を含む今週のニュース(13:46)について話します来年の大きな予測を立てます(34:16)。

スイス航空ショーで2機の曲技飛行機が衝突、1人のパイロットが死亡したと報告

スイス航空ショーで2機の曲技飛行機が衝突、1人のパイロットが死亡したと報告

昨日のショアハム航空ショーでの恐ろしい墜落に続いて、ドイツのグラスホッパーズ曲技飛行チームに所属する2機のイカルスC42航空機が、スイスのディッティンゲンでの航空ショーで演奏中に空中で衝突しました。報告によると、1人のパイロットが衝突中に飛行機から投げ出され、地面にパラシュートで降下しました。

Chromebookをたった150ドルで購入できるようになりました(そしてさらに良くなっています)

Chromebookをたった150ドルで購入できるようになりました(そしてさらに良くなっています)

5年前、GoogleのCEOであるEric Sc​​hmidtは、ラップトップは使い捨てになると宣言しました。もうすぐです。

ケイト・ミドルトンとウィリアム王子は、彼らが子供たちと行っているスパイをテーマにした活動を共有しています

ケイト・ミドルトンとウィリアム王子は、彼らが子供たちと行っているスパイをテーマにした活動を共有しています

ケイト・ミドルトンとウィリアム王子は、子供向けのパズルの本の序文を書き、ジョージ王子、シャーロット王女、ルイ王子と一緒にテキストを読むと述べた.

事故で押しつぶされたスイカは、動物を喜ばせ水分補給するために野生生物保護団体に寄付されました

事故で押しつぶされたスイカは、動物を喜ばせ水分補給するために野生生物保護団体に寄付されました

Yak's Produce は、数十個のつぶれたメロンを野生動物のリハビリ専門家であるレスリー グリーンと彼女のルイジアナ州の救助施設で暮らす 42 匹の動物に寄付しました。

デミ・ロヴァートは、新しいミュージシャンのボーイフレンドと「幸せで健康的な関係」にあります: ソース

デミ・ロヴァートは、新しいミュージシャンのボーイフレンドと「幸せで健康的な関係」にあります: ソース

8 枚目のスタジオ アルバムのリリースに向けて準備を進めているデミ ロヴァートは、「スーパー グレート ガイ」と付き合っている、と情報筋は PEOPLE に確認しています。

Plathville の Kim と Olivia Plath が数年ぶりに言葉を交わすことへようこそ

Plathville の Kim と Olivia Plath が数年ぶりに言葉を交わすことへようこそ

イーサン プラスの誕生日のお祝いは、TLC のウェルカム トゥ プラスビルのシーズン 4 のフィナーレで、戦争中の母親のキム プラスと妻のオリビア プラスを結びつけました。

水門の修理

水門の修理

天王星と海王星の間の領域に向かって宇宙を 3/4 g の低温で航行しながら、私たちは数週間燃え続けていました。Dawson Trawler の科学者が Yggdrasil ポータルと呼んだもの。

美しいもの

美しいもの

女性として、私は通常、関係を築くことをためらっています。私はいつも彼らに負けないように苦労しました。私は誰かと共有したいという衝動と戦わなければなりません。

逃走中の女性からの発信

最も家が必要なときに家のように感じる場所はありません。

逃走中の女性からの発信

私は誰よりも移動しました。父が住んでいた土地には、父が 1 歳馬を折るミニチュアの競馬場がありました。

死にゆく男から学んだ最大の人生の教訓

彼は、私たちが持っているのはこの現在の瞬間だけであることを知るのが遅すぎました。

死にゆく男から学んだ最大の人生の教訓

ブラッドは、カーキ色のショート パンツとポロ シャツを着たまま、白いゴルフ グローブを両手で高く引っ張ったまま、ベッドルームに入ってきました。彼は満面の笑みを浮かべながら、「今年は私の人生で最高の年だったと思います!」と言いました。通常は保守的な消費者である私たちは、通常とは異なることをしました。

Language