接続された滑らかな多様体の方向を固定 $\mathbb{R}^n$ 単一のチャートで

2
Nameless 2020-08-19 01:10.

私はゾリッヒ、数学分析II、第1版について勉強しています。ページ。174-175。で滑らかなk次元表面の方向(同値類)がどのように定義されるかを適切に説明した後$\mathbb {R} ^ n$ 単一のマップで記述できる場合は、次の意味を定義して、より一般的なケースに進みます。

  1. 一貫したチャート、
  2. アトラスの向き、
  3. アトラスを方向付けるための同値類(表面の可能な方向)。

これを行った後、彼は、接続された滑らかなk次元の表面が2つの可能な方向しか持てないことを証明せずに述べています。この声明から、彼は、このタイプの表面の方向を固定するために、一貫したチャートのアトラス全体を表示する必要はないが、単一のチャートを表示するだけで十分であるとすぐに推測します。

理由を証明しようとしていましたが、できません。不条理なことに、共通のチャートを含むペアワイズの一貫したチャートで作られた、方向の異なる2つのアトラスがあると思いました。$ \varphi_1 $

$$A_1=\{\varphi_1,\varphi_2,...,\varphi_m,...\}$$ $$A_2=\{\varphi_1,\varphi'_2,...,\varphi'_m,...\}$$

しかし、ここから私は不条理に到達することはできません。誰か助けてくれませんか?

2 answers

2
Lee Mosher 2020-08-21 02:45.

「表面」は通常2次元を意味するため、「表面」の代わりに「多様体」という用語を使用します。

表記を使用させてください $M$ 問題のマニホールド用。

あなたはどういうわけか多様体という仮説を利用しなければなりません $M$接続されています。マニフォールドはローカルでパス接続されているため、接続されたローカルでパス接続された空間はパス接続されているという定理を使用できます。

一般的なチャートを検討してください $\varphi_1 : U_1 \to \mathbb R^k$$A_1 \cap A_2$、および基点を修正します $p \in U_1$

今、私は直接証明します $A_1$ およびのチャート $A_2$ それらのオーバーラップのどのポイントでも一貫しています。

任意を考慮してください $x \in M$、およびチャートを選出 $\phi_I : U_I \to \mathbb R^k$$A_1$ そして $\varphi'_J : U'_J \to \mathbb R^k$$A_2$、 そのような $x \in U_I \cap U'_J$。私たちはそれを示さなければなりません$\varphi_I$ そして $\varphi'_J$ その時点で一貫している $x$

マニホールドのパス接続を使用する $M$、連続パスを選択します $\gamma : [0,1]$ そのような $\gamma(0)=p$ そして $\gamma(1)=x$。セット以来$\{U_i \cap U'_j\}_{i,j}$ カバー $M$、それらの逆像 $\{\gamma^{-1}(U_i \cap U'_j)\}_{i,j}$ カバー $[0,1]$。ルベーグ数補題を適用して、整数を選択できます$N \ge 1$、および分解 $[0,1]$ サブインターバルに $I_m = [\frac{m-1}{N},\frac{m}{N}]$$m=1,\ldots,N$、 そのため $\gamma(I_m)$ 交差点の1つのサブセットです $U_{i(m)} \cap U'_{j(m)}$

私達はことを知っています $\varphi_{i(1)}$ そして $\varphi'_{j(1)}$ 両方ともで互いに一貫しています $\gamma(0)=p$、両方が $\varphi_1$。パスを検討してください$\gamma \mid I_1$ そしてしましょう $t \in I_1 = [0,1/N]$ から変化する $0$$1/N$。なので$t$ 変化する、2つのチャートのオーバーラップマップの導関数の行列式 $\varphi_{i(1)}$ そして $\varphi'_{j(1)}$ 継続的に変化し、どこでもゼロ以外であり、 $t=0$、したがって、それはで正です $t=1/N$。これはそれを証明します$\varphi_{i(1)}$ そして $\varphi'_{j(1)}$ で一貫している $\gamma(1/N)$

ここで、帰納法の証明を行います。帰納法によって、 $\varphi_{i(m)}$ そして $\varphi'_{j(m)}$ で一貫している $\gamma(m/N)$、私たちはそれを証明します $\varphi_{i(m+1)}$ そして $\varphi'_{j(m+1)}$ で一貫している $\gamma((m+1)/N)$。以来$\varphi_{i(m)}$ そして $\varphi_{i(m+1)}$ で一貫している $\gamma(m/N)$、 それ以来 $\varphi'_{j(m)}$ そして $\varphi'_{j(m+1)}$ で一貫している $\gamma(m/N)$、それはそれに続く $\varphi_{i(m+1)}$ そして $\varphi'_{j(m+1)}$ で一貫している $\gamma(m/N)$。これで、2つのチャートのオーバーラップマップの導関数の行列式の連続性を使用して、前の段落と同様に証明が続行されます。$\varphi_{i(m+1)}$ そして $\varphi'_{j(m+1)}$$\gamma(t)$、 なので $t \in I_{m+1}$ から変化します $m/N$$(m+1)/N$、およびこれらのグラフの一貫性 $\gamma(m/N)$、で一貫性を推測する $\gamma((m+1)/N)$。これで帰納法のステップは完了です。

証明を完了するために、私たちはそれを示しました $\varphi_{i(N)}$ そして $\varphi'_{j(N)}$ で一貫している $\gamma(N/N)=x$。私達はまたそれを知っています$\varphi_I$ と一致する $\varphi_{i(N)}$、および $\varphi'_J$ と一致する $\varphi'_{j(N)}$$x$。したがって、$\varphi_I$ そして $\varphi'_J$ で一貫している $x$

2
Soumik 2020-08-21 02:16.

しましょう $M$ あなたになりなさい $k$-チャートに対して作成された次元の表面 $\{ \varphi_i\}_i$$\varphi_i : \mathbb R^k\rightarrow U_i \subset_{open } M $$\exists \ \omega\in \Omega^k(M)$ そのような $\omega$すべての点で消えることはありません。これは可能です$M$ 向き付け可能です。 $\varphi_i^*\omega=g_i \lambda$ どこ $\lambda=dx_1\wedge dx_2\wedge \dots dx_n$ そして $g_i:\mathbb R^k \rightarrow \mathbb R$消えない滑らかな関数です。チャートは一貫しているので、どちらか$g_i$は正またはすべて負です。すべての$g_i$は正です。

これでチャートができました $\{ \varphi_1, \varphi_j'\}_j $ 前と同じように $\varphi^*_1 \omega =g_1\lambda$ そして ${\varphi'}_j^*\omega=h_j \lambda$。上記と同じロジックで、次のいずれかが得られます$\{g_1, h_j \}_j$すべて正の関数またはすべて負の関数です。しかしそれ以来$g_1$ ポジティブです、私たちはすべてを手に入れます $h_j$は正です。したがって、同じ方向になります。

Related questions

MORE COOL STUFF

Reba McEntire は、彼女が息子の Shelby Blackstock と共有する「楽しい」クリスマスの伝統を明らかにしました:「私たちはたくさん笑います」

Reba McEntire は、彼女が息子の Shelby Blackstock と共有する「楽しい」クリスマスの伝統を明らかにしました:「私たちはたくさん笑います」

Reba McEntire が息子の Shelby Blackstock と共有しているクリスマスの伝統について学びましょう。

メーガン・マークルは、自然な髪のスタイリングをめぐってマライア・キャリーと結ばれました

メーガン・マークルは、自然な髪のスタイリングをめぐってマライア・キャリーと結ばれました

メーガン・マークルとマライア・キャリーが自然な髪の上でどのように結合したかについて、メーガンの「アーキタイプ」ポッドキャストのエピソードで学びましょう.

ハリー王子は家族との関係を修復できるという「希望を持っている」:「彼は父親と兄弟を愛している」

ハリー王子は家族との関係を修復できるという「希望を持っている」:「彼は父親と兄弟を愛している」

ハリー王子が家族、特にチャールズ王とウィリアム王子との関係について望んでいると主張したある情報源を発見してください。

ワイノナ・ジャッドは、パニックに陥った休暇の瞬間に、彼女がジャッド家の家長であることを認識しました

ワイノナ・ジャッドは、パニックに陥った休暇の瞬間に、彼女がジャッド家の家長であることを認識しました

ワイノナ・ジャッドが、母親のナオミ・ジャッドが亡くなってから初めての感謝祭のお祝いを主催しているときに、彼女が今では家長であることをどのように認識したかを学びましょう.

セントヘレナのジェイコブのはしごを登るのは、気弱な人向けではありません

セントヘレナのジェイコブのはしごを登るのは、気弱な人向けではありません

セント ヘレナ島のジェイコブズ ラダーは 699 段の真っ直ぐ上る階段で、頂上に到達すると証明書が発行されるほどの難易度です。

The Secrets of Airline Travel Quiz

The Secrets of Airline Travel Quiz

Air travel is far more than getting from point A to point B safely. How much do you know about the million little details that go into flying on airplanes?

Where in the World Are You? Take our GeoGuesser Quiz

Where in the World Are You? Take our GeoGuesser Quiz

The world is a huge place, yet some GeoGuessr players know locations in mere seconds. Are you one of GeoGuessr's gifted elite? Take our quiz to find out!

バイオニック読書はあなたをより速く読むことができますか?

バイオニック読書はあなたをより速く読むことができますか?

BionicReadingアプリの人気が爆発的に高まっています。しかし、それは本当にあなたを速読術にすることができますか?

世界最小のマルチツールを15ドルでキーチェーンに追加

世界最小のマルチツールを15ドルでキーチェーンに追加

爪| $ 15 | マルボロ&ケインザクロー| $ 15 | Malboro&Kane世界最小のマルチツールであるTheClawをたった15ドルで手に入れましょう。男の子と一緒に冷たいものを割って開けたり、ネジを締めたり、Amazonパッケージを細断したりする場合でも、この悪い男の子はこれまでで最も便利な製品の1つです。

ワンダーウーマンの続編の悪役についてのより多くの噂

ワンダーウーマンの続編の悪役についてのより多くの噂

ワンダーウーマンとしてのガル・ガドット。WaywardPinesは正式に終了しました。

42,000試合で作られた球がスローモーションで燃えるのを見るのは魅力的な光景です

42,000試合で作られた球がスローモーションで燃えるのを見るのは魅力的な光景です

人が2つのマッチを接着するように導くものは何ですか?何があなたをマッチに打ち続け、構造が湾曲していることを発見するのですか?42,000のボールを作るまで、試合を続けなければならない理由は何ですか?しかし、何よりも、これほど魅力的なショーである可能性はどのようにありますか?私はあなたをだますつもりはありません、次に私たちがあなたに残すのは、あなたや私のような人が自由な時間を過ごすことを決定するビデオですボールを作るために必要な試合数を確認します(答えは42です。

サクラメントビーが1950万人のカリフォルニア州の有権者記録を漏らし、ハッカーによって即座に侵害された

サクラメントビーが1950万人のカリフォルニア州の有権者記録を漏らし、ハッカーによって即座に侵害された

写真:AP先月、カリフォルニアの地元新聞が1,900万件以上の有権者記録をオンラインで公開しました。Gizmodoは今週、明らかなランサムウェア攻撃中にレコードが侵害されたことを確認しました。

米国のフィギュア スケートは、チーム イベントでの最終決定の欠如に「苛立ち」、公正な裁定を求める

米国のフィギュア スケートは、チーム イベントでの最終決定の欠如に「苛立ち」、公正な裁定を求める

ロシアのフィギュアスケーター、カミラ・バリエバが関与したドーピング事件が整理されているため、チームは2022年北京冬季オリンピックで獲得したメダルを待っています。

Amazonの買い物客は、わずか10ドルのシルクの枕カバーのおかげで、「甘やかされた赤ちゃんのように」眠れると言っています

Amazonの買い物客は、わずか10ドルのシルクの枕カバーのおかげで、「甘やかされた赤ちゃんのように」眠れると言っています

何千人ものAmazonの買い物客がMulberry Silk Pillowcaseを推奨しており、現在販売中. シルクの枕カバーにはいくつかの色があり、髪を柔らかく肌を透明に保ちます。Amazonで最大46%オフになっている間にシルクの枕カバーを購入してください

パデュー大学の教授が覚醒剤を扱った疑いで逮捕され、女性に性的好意を抱かせる

パデュー大学の教授が覚醒剤を扱った疑いで逮捕され、女性に性的好意を抱かせる

ラファイエット警察署は、「不審な男性が女性に近づいた」という複数の苦情を受けて、12 月にパデュー大学の教授の捜査を開始しました。

コンセプト ドリフト: AI にとって世界の変化は速すぎる

コンセプト ドリフト: AI にとって世界の変化は速すぎる

私たちの周りの世界と同じように、言語は常に変化しています。以前の時代では、言語の変化は数年または数十年にわたって発生していましたが、現在では数日または数時間で変化する可能性があります。

SF攻撃で91歳のアジア人女性が殴られ、コンクリートに叩きつけられた

犯罪擁護派のオークランドが暴力犯罪者のロミオ・ロレンゾ・パーハムを釈放

SF攻撃で91歳のアジア人女性が殴られ、コンクリートに叩きつけられた

認知症を患っている 91 歳のアジア人女性が最近、47 番街のアウター サンセット地区でロメオ ロレンゾ パーハムに襲われました。伝えられるところによると、被害者はサンフランシスコの通りを歩いていたところ、容疑者に近づき、攻撃を受け、暴行を受けました。

ℝ

“And a river went out of Eden to water the garden, and from thence it was parted and became into four heads” Genesis 2:10. ? The heart is located in the middle of the thoracic cavity, pointing eastward.

メリック・ガーランドはアメリカに失敗しましたか?

バイデン大統領の任期の半分以上です。メリック・ガーランドは何を待っていますか?

メリック・ガーランドはアメリカに失敗しましたか?

人々にチャンスを与えることは、人生で少し遅すぎると私は信じています。寛大に。

Language