補題:
しましょう $f(z)=\sum_{n=2}^{\infty} a_nz^n$ 半径に収束する $>1.$ 次に:
$$\sum_{n=2}^{\infty} a_n\zeta(n)=\sum_{k=1}^{\infty} f\left(\frac1k\right)$$
証明:
$$\begin{align}\sum_{n=2}^{\infty} a_n\zeta(n)&=\sum_{n=2}^{\infty} a_n\sum_{k=1}^{\infty} \frac{1}{k^n} \\ &=\sum_{k=1}^{\infty}\sum_{n=2}^{\infty}a_n\left(\frac 1k\right)^n\\ &=\sum_{k=1}^{\infty}f\left(\frac1k\right) \end{align}$$
さて、あなたの場合、 $a_n=\frac{(-1)^{n}}{2^{n-1}n}$ 与える $$f(z)=2\sum_{n=2} \frac{(-z/2)^n}{n}=z-2\log(1+z/2)$$
さて、 $$\sum_{k=1}^{N}f(1/k)=H_N - 2\log\left(\frac{3}{2}\cdot \frac{5}{4}\cdots\frac{2N+1}{2N}\right)$$
さて、 $H_N-\log N\to \gamma.$ したがって、制限は制限と同じです $$\gamma -2 \log\left(\frac{3}{2}\cdot \frac{5}{4}\cdots\frac{2N+1}{2N}\cdot\frac{1}{\sqrt{N}}\right)$$ なので $N\to\infty.$
したがって、次のことを示す必要があります。
$$\lim_{N\to\infty}\frac{3}{2}\cdot \frac{5}{4}\cdots\frac{2N+1}{2N}\cdot\frac{1}{\sqrt{N}}=\frac{2}{\sqrt{\pi}}$$
だが: $$\frac{3}{2}\cdot \frac{5}{4}\cdots\frac{2N+1}{2N}=\frac{2N+1}{2^{2N}}\binom{2N}{N}$$
そして、私たちはそれを持っています $\binom{2n}{n}\sim \frac{2^{2n}}{\sqrt{\pi n}}$ ((https://en.wikipedia.org/wiki/Central_binomial_coefficient)
だから私たちは持っています:
$$\frac{3}{2}\cdot \frac{5}{4}\cdots\frac{2N+1}{2N}\cdot\frac{1}{\sqrt{N}}\sim\frac{2N+1}{N\sqrt{\pi}}\sim \frac{2}{\sqrt{\pi}}$$