通常の曲線としての曲線の再パラメータ化(トポロジ)

3
Tom Collinge 2019-06-07 04:37.

曲線またはトポロジーパスは、論文「連続パスの再パラメーター化-UlrichFahrenbergおよびMartinRaussen」に含まれている通常の曲線として再パラメーター化できるという結果があります。 https://arxiv.org/pdf/0706.3560.pdf

私にとって、概念はあまりにも進んでいます。これについてもっと簡単な証拠はありますか?

以下の定義は、(多かれ少なかれ)論文から取られています。

パスは連続的マッピングであります$p$ 閉じた単位区間から $I = [0, 1]$ 位相空間へ $X$
パスのイメージがXの単一の点である場合を除いて、閉じた間隔がない場合、パスは規則的です。$[a, < b] \subset I$ その上で $p$は一定です。reparametrization
$\phi$ は非減少の全射連続写像です $\phi: I \to I$$\phi(0) = 0; \phi(1) = 1$

定理:任意のパス$p: I \to X$ 通常のパスがあります $q: I \to X$ および再パラメータ化 $\phi$ そのような $p = q \circ \phi$


その場合にこれを証明するのは簡単に見えます $p$停止間隔の数には限りがあります$p$ 一定)それらを一つずつ切り取り、対応するものを構成することによって $\phi$関数。明らかに停止間隔の数は数えられますが、数え切れないほどの数の停止間隔をどのように処理するのですか?

1 answers

1
Paul Frost 2019-08-09 07:26.

(* x)元の回答に追加された脚注を参照してください...


あなたはその場合を除外します $p : I \to X$は一定です。しましょう$\mathcal C$ すべてのプリイメージのすべてのコンポーネントのセット(* a) $p^{-1}(x)$$x \in p(I)$ そして $\mathcal S$ すべてのサブセット $S \in \mathcal C$複数のポイントがある。以来$S$ の接続されたサブセットです $I$、それは間隔です。それが必要なので$S$ 複数のポイントがあり、長さがあります $> 0$ そしてそれを停止間隔と呼びます $p$。オープン、ハーフオープン、またはクローズドインターバルの場合があります。

続編では、すべての停止間隔が閉じた間隔であると想定しています。これは、次の場合に自動的に満たされます。$X$$T_1$-スペース(* b)。その後、すべて$p^{-1}(x)$ で閉じられます $I$そのため、そのすべてのコンポーネントも閉じられます。閉じられていない停止間隔が存在する場合、以下のいくつかの引数は無効になります。

セット $\mathcal S$可算(* c)(空を含む有限、または無限)。しましょう$C = \bigcup_{S \in \mathcal S} S$。しましょう$\mathcal T$ のコンポーネントのセットを示します $I \setminus C$。の各要素$\mathcal T$間隔です-開いている、半分開いている、または閉じている(ポイントに縮退している可能性があります)。(* d)

閉じたサブインターバルごとに $J = [c,d] \subset I$ しましょう $$\mathcal S_J = \{ S \cap J \mid S \in \mathcal S, S \cap J \ne \emptyset \} .$$これもまた、閉じた間隔の可算集合です。それは可能です$S \cap J = \{c\},\{d\}$(縮退した間隔)が、これは問題ではありません。番号$$\lvert \mathcal S_J \rvert = \sum_{A \in \mathcal S_J} \lvert A \rvert$$明確に定義されています。ここに$\lvert A \rvert$ 長さを示します $b - a$ 間隔の $A = [a, b]$。明らかに私たちは常に持っています$\lvert \mathcal S_J \rvert \le \lvert J \rvert$

定義する $$s : I \to I, s(t) = \lvert \mathcal S_{[0,t]} \rvert .(*e)$$ にとって $t \le t'$ 我々は持っています $s(t') = s(t) + \lvert \mathcal S_{[t,t']} \rvert$。これを確認するには、$S = [a,b] \in \mathcal S$ そのような $S \cap [0,t'] \ne \emptyset$。我々は持っています$S \cap [0,t'] = (S \cap [0,t]) \cup (S \cap [t,t'])$。これらの2つの交差点のいずれかが空の場合、加数$\lvert S \cap [0,t'] \rvert$$\lvert \mathcal S_{[0,t']} \rvert$ 合計の1つだけで発生します $\lvert \mathcal S_{[0,t]} \rvert$$\lvert \mathcal S_{[0,t]} \rvert$。両方の交差点が空でない場合は、$\lvert S \cap [0,t'] \rvert = \lvert S \cap [0,t] \rvert + \lvert S \cap [t,t'] \rvert$

私たちはそれを結論付けます

  1. にとって $t \le t'$ 我々は持っています $s(t') = s(t) + \lvert \mathcal S_{[t,t']} \rvert \le s(t) + (t' - t)$

  2. $s$ 1.が意味するため、連続です $\lvert s(t') - s(t) \rvert \le \lvert t' - t \rvert$ すべてのために $t, t'$

  3. の制限 $s$$S = [a,b] \in \mathcal S$ 形があります $s(t) = s(a) + \lvert \mathcal S_{[a,t]} \rvert = s(a) + \lvert [a,t]\rvert = s(a) + (t-a)$

  4. の制限 $s$$T \in \mathcal T$ 一定です(何らかの値があります $c_T$)。これを見るには、$t,t' \in T$$t \le t'$。次に$s(t') = s(t) + \lvert \mathcal S_{[t,t']} \rvert = s(t)$ なぜなら $[t,t'] \subset T \subset I \setminus C$ 交差しない $S \in \mathcal S$

定義する $r(t) = t - s(t)$。これは、次のような連続関数です。$r(t) \ge 0$ そして $r(0) = 0$。関数$r$ のために減少していません $t \le t'$ 我々は持っています $r(t') - r(t) = t' - s(t') - (t - s(t)) = (t' - t) - (s(t') - s(t)) \ge 0$(1を参照)。以来$r(1) = 1 - s(1)$$r$ 継続的な非減少全射として $r : I \to [0,1-s(1)]$

また、 $t\in S = [a,b] \in \mathcal S$ 我々は持っています $r(t) = t - s(a) - (t-a) = a - s(a)$ とのために $t \in T \in \mathcal T$ 我々は持っています $r(t) = t - c_T$。これは、の停止間隔が$r$ と同じです $p$。したがって、$p = p' \circ r$ 独自の機能を備えています $p' : [0,1-s(1)] \to X$。なぜなら$I$ コンパクトで、 $r$ 商マップであり、 $p'$連続です(* f、* g、* h)。ストレッチ$[0,1-s(1)]$$I$望ましい結果が得られます。ご了承ください$s(1) )= 1$ その場合は不可能なので不可能です $p$ 一定になります。

最後に、閉じていない停止間隔が存在する場合に引数がどこで分解されるかを見てみましょう。 $S$。次に$S \subsetneqq \overline{S} = [a, b]$ および3.保持する $\overline{S}$。したがって、$r$ は一定です $\overline{S}$(これは連続性からも続きます)。したがって、$r$ そして $p$同じ停止間隔はありません。例として、一定でないマップを考えてみましょう$f : I \to \{0,1\}$、 どこ $\{0,1\}$ のような些細なトポロジーを持っています $p(x) = 0$ にとって $x < 1/2$ そして $p(x) = 1$ にとって $x \ge 1/2$。次に$p$ 停止間隔があります $[0,1/2)$ そして $[1/2,1]$、 だが $r$ 停止間隔があります $I$

リマーク:

定義を使用することもできます $$s(t) = \int_0^t \chi_C(x)dx$$ どこ $\chi_C$ サブセットの特性関数です $C \subset I$ (すなわち $\chi_C(x) = 1$ にとって $x \in C$$\chi_C(x) = 0$ にとって $x \notin C$)。しかし、証拠その$\chi_C$ 可積分である必要があります。


明確化と参照..。

(* a)「コンポーネント」の定義に暗黙的に含まれているのは、それらが接続されていることです。
(* b)スペースは$T_1$すべてのシングルトンポイントセットが閉じている場合に限ります。
(* c)$\mathcal S $ の正の長さの合計を計算できる必要があります $S \in \mathcal S$有限であること。
(* d)それぞれが$S$が閉じられている(可算)無限の和集合を閉じる必要はありません-したがって、$\mathcal T$
(* e)$s(t) $ その場合、ポイントまでの「停止した長さ」の合計です。 $t$
(* f)Munkres-トポロジー、p.135商マップの定義:連続全射開写像は商マップです。
(* g)https://math.stackexchange.com/q/548598-コンパクト空間からハウスドルフへの連続マップは閉じられています。
(* h)Munkres-トポロジー、p.142定理22.2-可換性図:の存在と連続性$p'$

Related questions

MORE COOL STUFF

ケイト・ブランシェットは3日間一緒に夫と一緒に寝て、25年経ってもまだ夫と結婚しています

ケイト・ブランシェットは3日間一緒に夫と一緒に寝て、25年経ってもまだ夫と結婚しています

ケイト・ブランシェットは、夫に会ったとき、典型的な交際のアドバイスに逆らいました。

マイケルシーンが非営利の俳優である理由

マイケルシーンが非営利の俳優である理由

マイケルシーンは非営利の俳優ですが、それは正確にはどういう意味ですか?

ホールマークスターのコリンエッグレスフィールドがRomaDramaLiveでスリル満点のファンと出会う![エクスクルーシブ]

ホールマークスターのコリンエッグレスフィールドがRomaDramaLiveでスリル満点のファンと出会う![エクスクルーシブ]

特徴的なスターのコリン・エッグレスフィールドは、RomaDrama Liveでのスリル満点のファンとの出会いについて料理しました!加えて、大会での彼のINSPIREプログラム。

「たどりつけば」をオンラインでストリーミングできない理由

「たどりつけば」をオンラインでストリーミングできない理由

ノーザンエクスポージャーが90年代の最も人気のある番組の1つになった理由を確認するには、Blu-rayまたはDVDプレーヤーをほこりで払う必要があります。

バイオニック読書はあなたをより速く読むことができますか?

バイオニック読書はあなたをより速く読むことができますか?

BionicReadingアプリの人気が爆発的に高まっています。しかし、それは本当にあなたを速読術にすることができますか?

ドミニカのボイリング湖:アクセスは簡単ではありませんが、ハイキングする価値があります

ドミニカのボイリング湖:アクセスは簡単ではありませんが、ハイキングする価値があります

ドミニカのボイリング湖は、世界で2番目に大きいボイリング湖です。そこにたどり着くまでのトレッキングは大変で長いですが、努力する価値は十分にあります。

私たちの水をきれいに保つのを助けるためにあなたの髪を寄付してください

私たちの水をきれいに保つのを助けるためにあなたの髪を寄付してください

サロンからのヘアトリミングや個人的な寄付は、油流出を吸収して環境を保護するのに役立つマットとして再利用できます。

ホワイトハウスの最も記憶に残る結婚式を見てください

ホワイトハウスの最も記憶に残る結婚式を見てください

過去200年以上の間にホワイトハウスで結婚したのはほんの数人です。彼らは誰でしたか、そしてそこで結婚式を獲得するために何が必要ですか?

アトランタのドナ・ブラジル:「私があなたに私の話をするとき私を踏まないでください」

アトランタのドナ・ブラジル:「私があなたに私の話をするとき私を踏まないでください」

2017年11月19日にアトランタで開催されたドナブラジルとモーアイボリー(ダグスミスフォトグラフィー)ドナブラジルを見逃すことはありません。

彼らは北朝鮮から脱出した亡命者の胃の中に奇妙な寄生虫を見つけました

彼らは北朝鮮から脱出した亡命者の胃の中に奇妙な寄生虫を見つけました

画像:ゲッティ陰謀愛好家は新しくてエキサイティングなディスカッション資料を持っています:国境を越えて韓国に5発撃たれた北朝鮮の脱北者は寄生虫でいっぱいで、そのうちの1人は南のメディアは、寄生虫を持った北朝鮮の脱北者を見つけることは珍しいことではないと報告している、実際、男性が30以上のタイプを持っていたケースがあった。

パニッシャーの第2話は、複雑な陰謀の網を織り交ぜています

パニッシャーの第2話は、複雑な陰謀の網を織り交ぜています

写真:パニッシャー(Netflix)これらのMarvel Netflixが愛していることが1つあるとすれば、それは複雑な政府や企業の陰謀です。そして、なぜこれらのショーがそのルートを選択するのかを理解するのは簡単です。

最新のBoseヘッドフォンは音楽を聴くためのものではなく、パートナーの鼻を鳴らすためのものです。

最新のBoseヘッドフォンは音楽を聴くためのものではなく、パートナーの鼻を鳴らすためのものです。

あなたのパートナーはチェーンソーのように詮索し、あなたを眠らせませんか?あなたのパートナーはあなたがチェーンソーのように詮索したと主張しますが、あなたが詮索しないので彼らは彼の想像ですか?あなたのケースが何であれ、Bose(はい、ハイエンドオーディオ機器のメーカー)はあなたのために何かを持っています。それらはBoseSleepbudsと呼ばれます。

Zendaya Wishes Boyfriend Tom Holland Happy Birthday with Cuddly Photo: He 'Makes Me the Happiest'

Zendaya Wishes Boyfriend Tom Holland Happy Birthday with Cuddly Photo: He 'Makes Me the Happiest'

Zendaya shared a sweet photo in honor of boyfriend Tom Holland's 26th birthday Wednesday

小さな女性:脳卒中を患った後に病院から解放されたアトランタのジューシーな赤ちゃん:「まだ癒し」

小さな女性:脳卒中を患った後に病院から解放されたアトランタのジューシーな赤ちゃん:「まだ癒し」

シーレン「Ms.JuicyBaby」ピアソンは、先月脳卒中で入院した後、「もう一度たくさんのことをする方法を学ばなければならない」ため、言語療法を受けていることを明らかにしました。

エマストーンは彼女のクリフサイドマリブビーチハウスを420万ドルでリストアップしています—中を見てください!

エマストーンは彼女のクリフサイドマリブビーチハウスを420万ドルでリストアップしています—中を見てください!

オスカー受賞者の世紀半ばの家には、3つのベッドルーム、2つのバス、オーシャンフロントの景色があります。

ジーニー・メイ・ジェンキンスは、母乳育児の経験の中で、彼女は「本当に、本当に落ち込んでいる」と言います

ジーニー・メイ・ジェンキンスは、母乳育児の経験の中で、彼女は「本当に、本当に落ち込んでいる」と言います

ジーニー・メイ・ジェンキンスは、生後4か月の娘、モナコに母乳育児をしていると語った。

投資ノート:Bioscout AU$300万シード

投資ノート:Bioscout AU$300万シード

Bioscoutは、農家を運転席に置くという使命を負っています。Artesian(GrainInnovate)やUniseedと並んで、最新のシードラウンドでチームを支援できることをうれしく思います。問題真菌症による重大な作物の損失は、農民にとって試練であることが証明されています。

リトルマーケットリサーチ1| 2022年のクイックグリンプス遠隔医療市場

リトルマーケットリサーチ1| 2022年のクイックグリンプス遠隔医療市場

遠隔医療は、パンデミック後の時代では新しいものではなく、時代遅れの分野でもありません。しかし、業界を詳しく見ると、需要と供給の強力な持続可能性と、米国で絶え間ない革命となる強力な潜在的成長曲線を示しています。

スタートアップ資金調達環境:タイのスタートアップエコシステムの次は何ですか?

スタートアップ資金調達環境:タイのスタートアップエコシステムの次は何ですか?

2021年は、世界的なベンチャーキャピタル(VC)の資金調達にとって記録的な年でした。DealStreetAsiaによると、東南アジアも例外ではなく、この地域では年間で記録的な25の新しいユニコーンが採掘されました。

ムーアの法則を超えて

ムーアの法則を超えて

計算に対する私たちの欲求とムーアの法則が提供できるものとの間には、指数関数的に増大するギャップがあります。私たちの文明は計算に基づいています—建築と想像力の現在の限界を超える技術を見つけなければなりません。

Language