の完全に分岐した拡張 $\mathbb{Q}_{p}$ これは形式ではありません $\mathbb{Q}_{p}(\sqrt[n]{pu})$

3
Seewoo Lee 2019-04-21 00:00.

有限拡大が知られています $K/\mathbb{Q}_{p}$ 次の場合にのみ完全に分岐します $K = \mathbb{Q}_{p}(\alpha)$ どこ $\alpha$アイゼンシュタインの多項式の根です。形式ではない完全に分岐した拡張機能はありますか$\mathbb{Q}_{p}(\sqrt[n]{pu})$ いくつかのための $u\in \mathbb{Z}_{p}^{\times}$?すべての次数2の完全に分岐した拡張機能にはこの形式がありますが、これが次数3以上にも当てはまるかどうかはわかりません。前もって感謝します。

2 answers

7
KCd 2019-04-22 13:48.

すべての飼いならされた完全に分岐した拡張の一般的な定理があります$\mathbf Q_p$ 程度で $n$ 形があります $\mathbf Q_p(\sqrt[n]{\pi})$ いくつかの素数のために $\pi$$\mathbf Z_p$、 そう $\pi = pu$ ユニット用 $u$$\mathbf Z_p$。(他のローカルフィールドにも同様の定理があります。)したがって、その形式ではなく完全に分岐した拡張が必要な​​場合は、$n$ で割り切れる $p$

やってみよう $n=p$。拡張機能について言えること$\mathbf Q_p(\sqrt[p]{pu})$ にとって $p>2$彼らはガロアではないということです$\mathbf Q_p$:フィールド $K$ の根の完全なセットを含む $x^p - pu$ 重要なものが含まれている必要があります $p$統一のルーツ、そしてそれらは程度を持っています $p-1$ 以上 $\mathbf Q_p$ そう $[K:\mathbf Q_p]$ で割り切れる $p-1$。したがって、$[K:\mathbf Q_p] \not= p$ いつ $p>2$。したがって、ガロアは完全に分岐した拡張$\mathbf Q_p$ 学位を持っている $p$ フォームを持つことはできません $\mathbf Q_p(\sqrt[p]{pu})$

すべての完全に分岐したアーベルガロア拡大$\mathbf Q_p$ 次数で割り切れる $p$ 次数のサブエクステンションが含まれています $p$ ガロアグループにはインデックスのサブグループがあるため $p$アーベル群の位数$n$ 各注文分割のサブグループがあります $n$ したがって、各インデックス分割のサブグループも $n$ の補因子に等しい位数の部分群を使用することによって $n$目的のインデックスの。完全に分岐した拡張のサブ拡張は完全に分岐し、アーベルガロア拡張のサブ拡張はアーベルガロア拡張です。したがって、今私たちがする必要があるのは、完全に分岐したアーベルガロア拡大を見つけることです。$\mathbf Q_p$ 次数で割り切れる $p$ その中には程度の拡張があります $p$、これらはすべて、求められている種類の例です(形式はありません) $\mathbf Q_p(\sqrt[n]{pu})$)。

最も簡単な選択は、円分拡張です。 $\mathbf Q_p(\zeta_{p^2})$ どこ $\zeta_{p^2}$ 秩序の統一の根源です $p^2$。このフィールドには次数があります$p^2-p$ 以上 $\mathbf Q_p$、周期的ガロア群 $(\mathbf Z/p^2\mathbf Z)^\times$、したがって、フィールドには次数を持つ一意のサブ拡張が含まれます $p$ 以上 $\mathbf Q_p$、つまり、ガロア群の一意のサブグループによって順序付けられて固定されたフィールド $(p^2-p)/p = p-1$。そのサブグループは、$a^{p-1} \equiv 1 \bmod p^2$、およびこの拡張機能のジェネレータ $\mathbf Q_p$ です $\sum_{a^{p-1} = 1} \zeta_{p^2}^a$ ここで、合計はのすべてのソリューションに適用されます $a^{p-1} \equiv 1 \bmod p^2$

$p=3$$a^2 \equiv 1 \bmod 9$ ソリューションがあります $\pm 1 \bmod 9$ そして $\zeta_{9} + \zeta_9^{-1}$ 最小多項式を持っています $f(x) = x^3 - 3x + 1$。次に$f(x-1) = x^3 - 3x^2 + 3$ エイゼンシュタインは $3$; 多項式$f(x+1)$ではありません。で最小多項式の計算をしました$\mathbf C$、プリミティブなので大丈夫です $p$1の冪根は同じ程度です $\mathbf Q_p$ それが終わるように $\mathbf Q$、したがって、の中間フィールドの構造 $p$th-power円分拡張 $\mathbf Q_p$ オーバー $\mathbf Q$ 同じだ。

$p=5$:ソリューション $a^4 \equiv 1 \bmod 25$ です $1, 7, 18$、および $24$、および $\zeta_{25} + \zeta_{25}^7 + \zeta_{25}^{18} + \zeta_{25}^{24}$ 最小多項式があります $\mathbf Q_5$ に等しい $g(x) = x^5 - 10x^3 + 5x^2 + 10x + 1$。(注意$g(x-1) = x^5 - 5x^4 + 25x^2 - 25x + 5$5歳のエイゼンシュタインです。多項式$g(x+1)$ エイゼンシュタインではありません $5$。)

5
Lubin 2019-04-22 12:11.

ユルキ・ラトネンの要請に応えて、ここで何が起こっているのかを説明しようと思います。

Hasse-Herbrand遷移関数は、上の凹多角形の実数値関数です。 $\Bbb R$これは、ローカルフィールドの分離可能な拡張のより高い影響の研究から得られる情報の多く(すべてではない)をカプセル化します。Serre's Corps Locauxの第IV章(ローカルフィールドとして翻訳)で、この主題に関するすべてを読むことができます。ただし、以下に表示されるものは、Serreの治療とはまったく異なります。違いが最も少ないのは、Serreの場合のように、平面の従来の調整では、完全に分岐した拡張の飼いならされた部分を表す頂点が原点に配置されることです。私の調整により、この頂点は次のようになります。$(1,1)$

パートIは、ニュートンコポリゴンについて説明します。これをより馴染みのあるポリゴンとは関連付けませんが、接続は表示されます。しましょう$f(X)=\sum_na_nX^n\in\mathfrak o[X]$、具体性のために、私はそれを仮定します $\mathfrak o$ 有限拡大の整数環です $k$$\Bbb Q_p$、および(加法)評価を使用していること $v$ オン $k$ 正規化されて $v(p)=1$。ゼロ以外の単項式ごとに$a_nX^n$、半平面を描画します $\Pi_n$ で説明されています $\Bbb R^2$ すべてのポイントとして $(\xi,\eta)$ 満足 $\eta\le n\xi+v(a_n)$。次に、凸集合を形成します$\bigcap_n\Pi_n$。これはコポリゴンですが、「コポリゴン関数」を関数と呼んで、あまり混乱させないようにしたいと思います。$v_f$そのグラフは、今説明した凸集合の境界です。たとえば、$f(X)=pX+pX^2+X^3$ コポリゴンの境界には、頂点が1つだけあります。 $(\frac12,\frac32)$、傾斜あり $3$ 左に傾斜 $1$右の方へ。あなたは問題なくそれを見る限り$g$ 定数項はありません、 $v_{f\circ g}=v_f\circ v_g$

パートII。ガロア拡大のガロア群の分岐ろ過の「下部ブレーク」と「上部ブレーク」は言うまでもありません。$K\supset k\supset\Bbb Q_p$ つまり、Herbrand関数は多角形の実数値関数であると宣言するだけです。 $\psi^K_k$ 頂点が各ブレークポイントにあるだけです $(\ell_i,u_i)$。遷移関数についての素敵な事実は、$L\supset K\supset k$、その後 $\psi^L_k=\psi^K_k\circ\psi^L_K$。遷移関数$\psi^K_k$ は拡張機能の不変条件であり、選択に依存しません。

パートIIIは、これら2つのポリゴン関数を関連付けることですが、これらが接続されている理由を説明する場所ではありません。Serreの場合のように、遷移関数の従来の説明は常にガロア群から始まりますが、以下にグループについての言及がないことに気付くでしょう。簡単にするために、ここでは説明します$\psi^k_{\Bbb Q_p}$ にとって $k$ 完全に分岐 $\Bbb Q_p$、SaewooLeeの質問に答えるにはそれで十分だからです。

しましょう $\mathfrak o$ の整数環である $k$、および $\pi$ 素元(極大イデアルの生成器)、そして $F(X)$ 最小限になります $\Bbb Q_p$-の多項式 $\pi$。多項式を形成する$f(X)=F(X+\pi)$、 そのため $f$定数項はありません。コポリゴン関数を取ります$v_f$ これの $f$、そしてそれを水平方向に1倍伸ばします $e^k_{\Bbb Q_p}=[k:\Bbb Q_p]$、 取得するため $\psi^k_{\Bbb Q_p}$。あれは、$\psi^k_{\Bbb Q_p}(\xi)=v_f(\xi\,/\,e)$

3つの例を考えてみましょう。 $\Bbb Q_2(\sqrt{2u}\,)$$\Bbb Q_2(\sqrt3\,)$、および $\Bbb Q_3(\rho)$ ここで、の最小多項式 $\rho$ です $X^3-3X-3$

まず、以上 $\Bbb Q_2$、素数は $\pi=\sqrt{2u}$、最小多項式 $F(X)=X^2-2u$、与える $f(X)=X^2+2\pi X$。コポリゴンはに固有の頂点を持っています$(\frac32,3)$、および遷移関数はで一意の頂点を持っています $(3,3)$。(の最初のセグメント$\psi^K_k$ 常に傾斜があります $1$。)

第二に、以上 $\Bbb Q_2$、素数の選択 $\Bbb Z_2[\sqrt3\,]$ です $\sqrt3-1$、最小多項式で $F(X)=X^2+2X-2$、 そのため $f(X)=X^2+2\pi X+2X=X^2+2(1+\pi)X$。ポリゴンの頂点は1つです。$(1,2)$、 そのため $\psi$ 頂点が $(2,2)$、それを示すのに十分 $\Bbb Q_2(\sqrt3\,)$ 形ではない $\Bbb Q_2(\sqrt{2u}\,)$

第三に、 $\Bbb Q_3$$F(X)=X^3-3X-3$、 我々が得る $f(X)=X^3+3\rho X^2+3\rho^2X-3X$、単項式のみ $X^3$ そして $3(\rho-1)X$ カウントし、コポリゴンの頂点が $(\frac12,\frac32)$、および遷移関数の頂点はにあります $(\frac32,\frac32)$

の遷移関数の頂点を示すのはあなたにお任せします $\Bbb Q_3(\sqrt[3]{3u}\,)$ にあります $(\frac52,\frac52)$。(これらの頂点に積分座標がないことに驚かないでください。これは、Hasse-Arfによる通常のアーベル拡大に対してのみ保証されており、ここでの3次拡大も保証されていません。)

MORE COOL STUFF

「水曜日」シーズン1の中心には大きなミステリーがあります

「水曜日」シーズン1の中心には大きなミステリーがあります

Netflixの「水曜日」は、典型的な10代のドラマ以上のものであり、実際、シーズン1にはその中心に大きなミステリーがあります.

ボディーランゲージの専門家は、州訪問中にカミラ・パーカー・ボウルズが輝くことを可能にした微妙なケイト・ミドルトンの動きを指摘しています

ボディーランゲージの専門家は、州訪問中にカミラ・パーカー・ボウルズが輝くことを可能にした微妙なケイト・ミドルトンの動きを指摘しています

ケイト・ミドルトンは、州の夕食会と州の訪問中にカミラ・パーカー・ボウルズからスポットライトを奪いたくなかった、と専門家は言う.

一部のファンがハリー・スタイルズとオリビア・ワイルドの「非常に友好的な」休憩が永続的であることを望んでいる理由

一部のファンがハリー・スタイルズとオリビア・ワイルドの「非常に友好的な」休憩が永続的であることを望んでいる理由

一部のファンが、オリビア・ワイルドが彼女とハリー・スタイルズとの間の「難しい」が「非常に友好的」な分割を恒久的にすることを望んでいる理由を見つけてください.

エリザベス女王の死後、ケイト・ミドルトンはまだ「非常に困難な時期」を過ごしている、と王室の専門家が明らかにする 

エリザベス女王の死後、ケイト・ミドルトンはまだ「非常に困難な時期」を過ごしている、と王室の専門家が明らかにする 

エリザベス女王の死後、ケイト・ミドルトンが舞台裏で「非常に困難な時期」を過ごしていたと伝えられている理由を調べてください.

セントヘレナのジェイコブのはしごを登るのは、気弱な人向けではありません

セントヘレナのジェイコブのはしごを登るのは、気弱な人向けではありません

セント ヘレナ島のジェイコブズ ラダーは 699 段の真っ直ぐ上る階段で、頂上に到達すると証明書が発行されるほどの難易度です。

The Secrets of Airline Travel Quiz

The Secrets of Airline Travel Quiz

Air travel is far more than getting from point A to point B safely. How much do you know about the million little details that go into flying on airplanes?

Where in the World Are You? Take our GeoGuesser Quiz

Where in the World Are You? Take our GeoGuesser Quiz

The world is a huge place, yet some GeoGuessr players know locations in mere seconds. Are you one of GeoGuessr's gifted elite? Take our quiz to find out!

バイオニック読書はあなたをより速く読むことができますか?

バイオニック読書はあなたをより速く読むことができますか?

BionicReadingアプリの人気が爆発的に高まっています。しかし、それは本当にあなたを速読術にすることができますか?

ラーム・エマニュエルがシカゴ警察の警視を解雇し、身を守る

ラーム・エマニュエルがシカゴ警察の警視を解雇し、身を守る

シカゴ市長のラーム・エマニュエルは、シカゴの警察官による17歳のラカン・マクドナルドの銃撃の失敗した取り扱いに続いて、市の警視官、ギャリーF.マッカーシーを解雇しました。

ダグ・マローネの理想的な食事は、ボローニャのサンドイッチです。

ダグ・マローネの理想的な食事は、ボローニャのサンドイッチです。

写真:ローガンボウルズ/ゲッティイメージズジャイアンツがベンマカドゥーを解雇したので、他の誰かがジムトムスラの精神的後継者でなければなりません。季節だった。ジャガーズのダグ・マローネ監督は、孤独なボローニャサンドイッチに親しみを持っていることを考えると、すでにその役割を担う有力な候補者のようです。

人々がやめる最も一般的な時間、およびプッシュスルーする方法

人々がやめる最も一般的な時間、およびプッシュスルーする方法

時には、それが副次的なプロジェクト、仕事、人間関係、または人生の他の部分であるかどうかにかかわらず、辞めることが最良の選択肢です。しかし、何かを完了するためのリソースがないため、物事が困難になったとき、タイミングが私たちに必要なように「感じ」させたときにも、私たちは辞めます。

黒人女性、あなたの内訳へようこそ

黒人女性、あなたの内訳へようこそ

著者のベニルデ・リトルは、母親の死後のうつ病との戦いを新しい回想録「Welcome toMyBreakdown」で記録しています。チェスター・トイの作家ベニルデ・リトルは、黒人女性にそれが大丈夫だと知ってもらいたいと思っています。

ケイト・ミドルトンとウィリアム王子は、彼らが子供たちと行っているスパイをテーマにした活動を共有しています

ケイト・ミドルトンとウィリアム王子は、彼らが子供たちと行っているスパイをテーマにした活動を共有しています

ケイト・ミドルトンとウィリアム王子は、子供向けのパズルの本の序文を書き、ジョージ王子、シャーロット王女、ルイ王子と一緒にテキストを読むと述べた.

事故で押しつぶされたスイカは、動物を喜ばせ水分補給するために野生生物保護団体に寄付されました

事故で押しつぶされたスイカは、動物を喜ばせ水分補給するために野生生物保護団体に寄付されました

Yak's Produce は、数十個のつぶれたメロンを野生動物のリハビリ専門家であるレスリー グリーンと彼女のルイジアナ州の救助施設で暮らす 42 匹の動物に寄付しました。

デミ・ロヴァートは、新しいミュージシャンのボーイフレンドと「幸せで健康的な関係」にあります: ソース

デミ・ロヴァートは、新しいミュージシャンのボーイフレンドと「幸せで健康的な関係」にあります: ソース

8 枚目のスタジオ アルバムのリリースに向けて準備を進めているデミ ロヴァートは、「スーパー グレート ガイ」と付き合っている、と情報筋は PEOPLE に確認しています。

Plathville の Kim と Olivia Plath が数年ぶりに言葉を交わすことへようこそ

Plathville の Kim と Olivia Plath が数年ぶりに言葉を交わすことへようこそ

イーサン プラスの誕生日のお祝いは、TLC のウェルカム トゥ プラスビルのシーズン 4 のフィナーレで、戦争中の母親のキム プラスと妻のオリビア プラスを結びつけました。

仕事の生産性を高める 8 つのシンプルなホーム オフィスのセットアップのアイデア

仕事の生産性を高める 8 つのシンプルなホーム オフィスのセットアップのアイデア

ホームオフィスのセットアップ術を極めよう!AppExert の開発者は、家族全員が一緒にいる場合でも、在宅勤務の技術を習得しています。祖父や曽祖父が共同家族で暮らしていた頃の記憶がよみがえりました。

2022 年、私たちのデジタル ライフはどこで終わり、「リアル ライフ」はどこから始まるのでしょうか?

20 年前のタイムトラベラーでさえ、日常生活におけるデジタルおよびインターネットベースのサービスの重要性に驚くことでしょう。MySpace、eBay、Napster などのプラットフォームは、高速化に焦点を合わせた世界がどのようなものになるかを示してくれました。

ニューロマーケティングの秘密科学

ニューロマーケティングの秘密科学

マーケティング担当者が人間の欲望を操作するために使用する、最先端の (気味が悪いと言う人もいます) メソッドを探ります。カートをいっぱいにして 3 桁の領収書を持って店を出る前に、ほんの数点の商品を買いに行ったことはありませんか? あなたは一人じゃない。

地理情報システムの日: GIS 開発者として学ぶべき最高の技術スタック

地理情報システムの日: GIS 開発者として学ぶべき最高の技術スタック

私たちが住んでいる世界を確実に理解するには、データが必要です。ただし、空間参照がない場合、このデータは地理的コンテキストがないと役に立たなくなる可能性があります。

Language