関数のドメインのエンドポイントはクリティカルポイントとしてカウントされますか?[複製]

3
rajdeep dhingra 2019-04-20 15:34.

ドメインのエンドポイントはクリティカルポイントに分類されますか?臨界点とは、導関数がゼロであるか、導関数が存在しない点であると私たちは知っています。

例えば: $$ f:[0,\pi] \to [-1,1], f(x) = \sin(x).$$ これには1つの臨界点または3つの臨界点(0および $\pi$ 含まれています)?

注:この質問は、単一変数関数のみに限定されています。多変数についても、これについての洞察が本当に欲しいのですが。

2 answers

編集済み

$$f'(x) = \cos(x) = 0 \iff x = \frac{\pi}{2}$$ 関数 $f$持っている3つの臨界点を。

  1. 極大値: $x = \pi/2$ (これで $f(\pi/2) = 1$。)
  2. のドメインのエンドポイント $f$ (あれは、 $[0,\pi]$): $x = 0$ そして $x = \pi$

他の答えは、の微分可能性を使用した定義に関するOPの理解について詳しく説明しているので $f$、その議論を繰り返す意味はありません。代わりに、私はから引用しますhttps://oregonstate.edu/instruct/mth251/cq/Stage7/Lesson/critical.htmlのドメインのエンドポイントを含める必要がある理由を示すため$f$ もし $f$それらのポイントで定義されます。そうすることで、私たちは記憶ではなく心で定義を学びます。

重要なポイントを見つける手順の目標は、(グローバルおよび/またはローカルの)極値が発生する可能性のあるドメイン内のポイント特定することです。

  1. 消滅するデリバティブ:
  2. 間隔のエンドポイント:( 画像ソース:http://tutorial.math.lamar.edu/Classes/CalcI/MinMaxValues_Files/image002.png
  3. 微分未定義: 、不連続点を含む

ソース: https://oregonstate.edu/instruct/mth251/cq/Stage7/Lesson/critical.html


@ mathcounterexamples.netが指摘しているように https://iquestion.pro/q/ma15878105/endo-pointo-de-kurithikaru-pointo-ga-hasseisuru-kanosei-wa-arimasu-ka-tatoeba-f-x-frac-1-x-kankaku-de-1-4、クリティカルポイントの定義は異なる場合があります。OPの定義はhttps://en.wikipedia.org/wiki/Critical_point_(mathematics)、それは実際にはDemidovǐcとBaranenkovのp.84に由来します http://www.karlin.mff.cuni.cz/%7Evybiral/MAII-2016/Demidovich-Problems-in-Mathematical-Analysis.pdf

逆は真実ではありません:ポイント $f'(x) = 0$、または $f'(x)$、存在しない(臨界点)は必ずしも関数の極値点ではありません$f(x)$

p.86の例5は、私たちが知っていることと矛盾しているようです。

$y:[-1\frac12, 2\frac12] \to \Bbb R$ として定義 $y = x^3-3x+3$。ソリューションでは、の明示的な式$y'$ 最初に与えられ、次に「の重要なポイント $y$ です $x = \pm 1$"。

再度編集:@MichaelRybkinが指摘しているように、作者は実際には最大値と最小値を意味します$[-1\frac12, 2\frac12]$$y: \Bbb{R} \to \Bbb{R}$ によって定義されます $y = x^3 - 3x + 3$


最後のコメント:個人的には、© CalculusQuest ™の定義を好みます。これに、ドメインのエンドポイント含まれています。これは、私たちの目標にとってはるかに理にかなっているためです。

3
Michael Rybkin 2019-04-20 22:58.

はい、関数には3つの重要な数値があります。1つは、関数の導関数が$f(x)=\sin{x}, x\in[0,\pi]$ はゼロで、他の2つはたまたまエンドポイントです $x=0$ そして $x=\pi$ 機能があるので $f(x)=\sin{x}, x\in[0,\pi]$ それらの点で微分不可能です。

関数がある時点で微分可能であるとはどういう意味か覚えていますか?関数はその時点で導関数を持っている必要があります。関数の導関数は何ですか$f(x)=\sin{x}, x\in[0,\pi]$$x=0$?まあ、それはする必要があります:

$$ \lim_{x\to0}\frac{\sin{x}-\sin{0}}{x-0}=\lim_{x\to0}\frac{\sin{x}}{x} $$

これは2つの片側極限にすぎません(これらの2つの極限が存在し、互いに等しい場合、極限自体が存在します)。

$$ \lim_{x\to0^-}\frac{\sin{x}}{x},\ \lim_{x\to0^+}\frac{\sin{x}}{x} $$ しかし、すべての意図と目的に対するこれら2つの制限のうち、最初の制限は存在しません。 $x$ の左側にある値 $0$ 関数の定義域にありません $f(x)=\sin{x}, x\in[0,\pi]$。制限が存在するためには、2つの片側極限が必要です。しかし、あなたは1つしか持っていません!したがって、$x=0$クリティカル数になる存在しません。まったく同じ考え方が他のエンドポイントにも当てはまります。

Related questions

MORE COOL STUFF

ダイアナ妃は、8歳でウィリアム王子を寄宿学校に送るという決定に「涙を流した」

ダイアナ妃は、8歳でウィリアム王子を寄宿学校に送るという決定に「涙を流した」

ウィリアム王子が 8 歳のときに寄宿学校に通わせたことについて、ダイアナ妃がどのように感じたかを学びましょう。

シャキール・オニールは、レイカーズのスターが彼のチキン帝国を北テキサスに拡大するにつれて、ダラスの外に永住権を購入しました

シャキール・オニールは、レイカーズのスターが彼のチキン帝国を北テキサスに拡大するにつれて、ダラスの外に永住権を購入しました

Shaquille O'Neal は最近、Big Chicken レストラン帝国を拡大するため、ダラス郊外に住居を購入しました。

「90 日間の婚約者」: イヴが逮捕され、浮気スキャンダルの後、モハメドに対する家庭内暴力の容疑に直面している — 何が起こったのか?

「90 日間の婚約者」: イヴが逮捕され、浮気スキャンダルの後、モハメドに対する家庭内暴力の容疑に直面している — 何が起こったのか?

「90日の婚約者」シーズン9のスター、イヴ・アレラーノが逮捕され、モハメド・アブデルハメドへの暴行容疑で家庭内暴力の罪に問われている.

ナターシャ・リオンは、ピーウィー・ハーマンは「ビジネスで最高のGIFを送る」と言います

ナターシャ・リオンは、ピーウィー・ハーマンは「ビジネスで最高のGIFを送る」と言います

ナターシャ・リオンは、ピーウィー・ハーマン自身、ポール・ルーベンスと親密です。彼らの友情について彼女が言ったことを発見してください。

セントヘレナのジェイコブのはしごを登るのは、気弱な人向けではありません

セントヘレナのジェイコブのはしごを登るのは、気弱な人向けではありません

セント ヘレナ島のジェイコブズ ラダーは 699 段の真っ直ぐ上る階段で、頂上に到達すると証明書が発行されるほどの難易度です。

The Secrets of Airline Travel Quiz

The Secrets of Airline Travel Quiz

Air travel is far more than getting from point A to point B safely. How much do you know about the million little details that go into flying on airplanes?

Where in the World Are You? Take our GeoGuesser Quiz

Where in the World Are You? Take our GeoGuesser Quiz

The world is a huge place, yet some GeoGuessr players know locations in mere seconds. Are you one of GeoGuessr's gifted elite? Take our quiz to find out!

バイオニック読書はあなたをより速く読むことができますか?

バイオニック読書はあなたをより速く読むことができますか?

BionicReadingアプリの人気が爆発的に高まっています。しかし、それは本当にあなたを速読術にすることができますか?

ニューヨーク州ブルックリン、住居侵入により91歳の死者、彼の「激しい」100歳の妻が動揺

ニューヨーク州ブルックリン、住居侵入により91歳の死者、彼の「激しい」100歳の妻が動揺

ワディマンとエスリン・トンプソン(@OneRandom_Chick via Twitterスクリーンショット)「ドナルド・トランプ、スティーブ・バノン、そして 『em』ファイルで地獄の内輪に特別な場所があります」、ニューヨーク州ブルックリンの高齢者

アイスランドは、プロバイダーが望んでいないネオナチのウェブサイトであるデイリーストーマーの未来を考えています

アイスランドは、プロバイダーが望んでいないネオナチのウェブサイトであるデイリーストーマーの未来を考えています

ネオナチのウェブサイトTheDailyStormerの編集者であるAndrewAnglinが、8月にバージニア州シャーロットビルで白人の超常主義者にひかれた後に亡くなった女性を侮辱して以来、さまざまなドメインプロバイダーからウェブサイトを別の場所に移動するように言われました。地点。現在、アイスランドはドメインWebサイトを立ち上げるかどうかを検討しています。

Fortniteはそれを粉砕し続けます

Fortniteはそれを粉砕し続けます

先週末、漫画風のバトルロワイヤルゲームFortniteは、すべてのプラットフォームで340万人の同時ユーザーを襲いました。

ウォッチ:ラシダジョーンズは#MeTooとTime'sUpは包括的でなければならないと言います

ウォッチ:ラシダジョーンズは#MeTooとTime'sUpは包括的でなければならないと言います

月曜日のMakersConferenceでAvaDuVernayが司会を務めたパネルディスカッションで、ハリウッドの女性が#MeTooムーブメントとTime'sUpイニシアチブについて話し合いました。パネルは映画とテレビ業界の女性とTime'sUpイニシアチブで構成されました:ディレクターMelina Matsoukas、弁護士ニーナ・ショー、作家兼コメディアンのジル・ソロウェイ、エージェントのマハ・ダキル、俳優のナタリー・ポートマンとラシダ・ジョーンズ。

ケイト・ミドルトンとウィリアム王子は、彼らが子供たちと行っているスパイをテーマにした活動を共有しています

ケイト・ミドルトンとウィリアム王子は、彼らが子供たちと行っているスパイをテーマにした活動を共有しています

ケイト・ミドルトンとウィリアム王子は、子供向けのパズルの本の序文を書き、ジョージ王子、シャーロット王女、ルイ王子と一緒にテキストを読むと述べた.

事故で押しつぶされたスイカは、動物を喜ばせ水分補給するために野生生物保護団体に寄付されました

事故で押しつぶされたスイカは、動物を喜ばせ水分補給するために野生生物保護団体に寄付されました

Yak's Produce は、数十個のつぶれたメロンを野生動物のリハビリ専門家であるレスリー グリーンと彼女のルイジアナ州の救助施設で暮らす 42 匹の動物に寄付しました。

デミ・ロヴァートは、新しいミュージシャンのボーイフレンドと「幸せで健康的な関係」にあります: ソース

デミ・ロヴァートは、新しいミュージシャンのボーイフレンドと「幸せで健康的な関係」にあります: ソース

8 枚目のスタジオ アルバムのリリースに向けて準備を進めているデミ ロヴァートは、「スーパー グレート ガイ」と付き合っている、と情報筋は PEOPLE に確認しています。

Plathville の Kim と Olivia Plath が数年ぶりに言葉を交わすことへようこそ

Plathville の Kim と Olivia Plath が数年ぶりに言葉を交わすことへようこそ

イーサン プラスの誕生日のお祝いは、TLC のウェルカム トゥ プラスビルのシーズン 4 のフィナーレで、戦争中の母親のキム プラスと妻のオリビア プラスを結びつけました。

水門の修理

水門の修理

天王星と海王星の間の領域に向かって宇宙を 3/4 g の低温で航行しながら、私たちは数週間燃え続けていました。Dawson Trawler の科学者が Yggdrasil ポータルと呼んだもの。

美しいもの

美しいもの

女性として、私は通常、関係を築くことをためらっています。私はいつも彼らに負けないように苦労しました。私は誰かと共有したいという衝動と戦わなければなりません。

逃走中の女性からの発信

最も家が必要なときに家のように感じる場所はありません。

逃走中の女性からの発信

私は誰よりも移動しました。父が住んでいた土地には、父が 1 歳馬を折るミニチュアの競馬場がありました。

死にゆく男から学んだ最大の人生の教訓

彼は、私たちが持っているのはこの現在の瞬間だけであることを知るのが遅すぎました。

死にゆく男から学んだ最大の人生の教訓

ブラッドは、カーキ色のショート パンツとポロ シャツを着たまま、白いゴルフ グローブを両手で高く引っ張ったまま、ベッドルームに入ってきました。彼は満面の笑みを浮かべながら、「今年は私の人生で最高の年だったと思います!」と言いました。通常は保守的な消費者である私たちは、通常とは異なることをしました。

Language